Estudio teórico fundamental comparativo de perovskitas: NaNbO3 y SrTiO3
Resumen
En el presente estudio teórico ab initio comparativo se utiliza el código SIESTA®, mediante la Teoría del Funcional de la Densidad (DFT) para comprender las propiedades estructurales y electrónicas de la fase cúbica en el equilibrio de la geometría de dos perovskitas complejas: NaNbO3 y SrTiO3. Se emplean dos pseudopotenciales base: Aproximación de Gradiente Generalizado (GGA) por los autores Perdew-Burke-Ernzerhof, y Aproximación de Densidad Local (LDA) por Ceperley-Alder. Los parámetros de red obtenidos para el NaNbO3 son a0= 3.900 y 4.040 Å con una precisión del 98.86 y 97.6%. Para el SrTiO3 se obtuvieron parámetros de red de a0= 3.969 y 3.811 Å con una precisión de 92.8 y 97.6% respectivamente de cada pseudopotencial. Se demuestra que el comportamiento de ambas estructuras de bandas tiene una transición electrónica indirecta particular con spin no polarizado, con un ancho de banda prohibida de ∼1.28 eV para el NaNbO3 y ∼2.0 eV para el SrTiO3 con el potencial de intercambio-correlación LDA y una estructura de bandas argumentativa de la fiable aplicación de estos materiales en fase cúbica para dispositivos opto-electrónicos.
Descargas
Citas
Azam, S., Irfan, M., Abbas, Z., Rani, M., Saleem, T., Younus, A., Akhtar, N., Liaqat, B., Shabbir, M., & Al-Sehemi, A. G. (2019). Electronic structure and optical properties of cubic nanbo3 and tetragonal knbo3 crystals: First principles study. Digest Journal of Nanomaterials and Biostructures, 14(3), 751–760. https://www.researchgate.net/publication/336135528_ELECTRONIC_STRUCTURE_AND_OPTICAL_PROPERTIES_OF_CUBIC_NaNbO3_AND_TETRAGONAL_KNbO_3_CRYSTALS_FIRST_PRINCIPLES_STUDY
Bachi, N. (2017). Propiedades fotoconductoras de monocristales y l´aminas delgadas de SrTiO3 [Universidad Nacional de Tucumán]. https://www.facet.unt.edu.ar/licfisica/wp-content/uploads/sites/57/2019/04/2017-Bachi-Nicolás.pdf
Bowler, D. R. (2018). Building bridges: matching density functional theory with experiment. Contemporary Physics, 59(4), 377–390. https://doi.org/10.1080/00107514.2019.1578079
Capizzi, M., & Frova, A. (1970). Optical Gap of Strontium Titanate (Deviation from Urbach Tail Behavior). Physical Review Letters, 25(18), 1298–1302. https://doi.org/10.1103/PhysRevLett.25.1298
Cardona, M. (1965). Optical properties and band structure of SrTiO3 and BaTiO3. Physical Review, 140(2A), A651–A655. https://doi.org/10.1103/PhysRev.140.A651
Ceperley, D. M., & Alder, B. J. (1980). Ground state of the electron gas by a stochastic method. Physical Review Letters, 45(7), 566–569. https://doi.org/10.1103/PhysRevLett.45.566
Cuervo, A. M. (2012). Propiedades estructurales y electronicas de monocapas hexagonales de Si, Ge, GaN y GaAs. Un estudio ab initio [Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Física]. https://repositorio.unal.edu.co/handle/unal/11509
Echeverri-Arteaga, S. (2019). Interacción radiación-materia mediada por fonones en la electrodinámica cuántica de cavidades. https://repositorio.unal.edu.co/handle/unal/76431
Fritsch, D. (2018). Electronic and optical properties of sodium niobate: A density functional theory study. Advances in Materials Science and Engineering, 2018, 10–12. https://doi.org/10.1155/2018/6416057
Ge, N.-N., Gong, C.-H., Yuan, X.-C., Zeng, H.-Z., & Wei, X.-H. (2018). Effect of Mn doping on electroforming and threshold voltages of bipolar resistive switching in Al/Mn : NiO/ITO. RSC Advances, 8(52), 29499–29504. https://doi.org/10.1039/C8RA04784G
González Olaya, W. L. (2013). Uso de la teoría del funcional densidad (dft) en la caracterización estructural y electrónica de la perovskita triple Sr3CoSb2O9 sintetizada en el laboratorio. https://repositorio.unal.edu.co/handle/unal/21899
Grosso, G. (1988). ELECTRONIC BAND STRUCTURE. In Cryst Semicond Mater and Devices. Warwick. https://warwick.ac.uk/fac/sci/physics/current/postgraduate/regs/mpagswarwick/ex5/bandstructure/
Gutiérrez Ruiz, M. (2016). Estudio de la naturaleza de las bandas de valencia y conducción de los sólidos cristalinos. https://doi.org/http://hdl.handle.net/10902/9204
Jack, M. A. (2014). QRing – A scalable parallel software tool for quantum transport simulations in carbon nanoring devices based on NEGF formalism and a parallel C ++ / MPI / PETSc algorithm. Center for Nanophase Materials Science, August, 0–9. https://doi.org/10.13140/2.1.2322.1124
Javier Junquera. (2016). Hands-on session. Complete characterization of a material. The case of SrTiO3. https://personales.unican.es/junqueraj/JavierJunquera_files/Metodos/Full-STO/Full-STO.html
Jesús Madrigal Melchor y Raúl Alberto Reyes Villagrana. (2013). La física de los semiconductores - Tachas 024 - Es lo Cotidiano. http://www.eslocotidiano.com/articulo/tachas-024/fisica-semiconductores/20131116111246006334.html
Junquera, J. (2016). The eggbox effect : converging the mesh cutoff. https://personales.unican.es/junqueraj/JavierJunquera_files/Metodos/Convergence/Eggbox-MgO/Exercise-eggbox-MgO.pdf
Kohn, W., Becke, A. D., & Parr, R. G. (1996). Density Functional Theory of Electronic Structure. The Journal of Physical Chemistry, 100(31), 12974–12980. https://doi.org/10.1021/jp960669l
Kokalj, A. (1999). XCrySDen--a new program for displaying crystalline structures and electron densities. Journal of Molecular Graphics & Modelling, 17(3–4), 176–179, 215–216. https://doi.org/10.1016/s1093-3263(99)00028-5
Lin, X., Bridoux, G., Gourgout, A., Seyfarth, G., Krämer, S., Nardone, M., Fauqué, B., & Behnia, K. (2014). Critical doping for the onset of a two-band superconducting ground state in SrTiO3-δ. Physical Review Letters, 112(20), 207002. https://doi.org/10.1103/PhysRevLett.112.207002
Liu, G., Ji, S., Yin, L., Xu, G., Fei, G., & Ye, C. (2011). Visible-light-driven photocatalysts: (La/Bi + N)-codoped NaNbO 3 by first principles. Journal of Applied Physics, 109(6), 063103. https://doi.org/10.1063/1.3554697
MacHado, R., Sepliarsky, M., & Stachiotti, M. G. (2011). Relative phase stability and lattice dynamics of NaNbO3 from first-principles calculations. Physical Review B - Condensed Matter and Materials Physics, 84(13), 134107. https://doi.org/10.1103/PhysRevB.84.134107
Macutkevic, J., Molak, A., & Banys, J. (2015). Dielectric properties of NaNbO3 ceramics. Ferroelectrics, 479(1), 48–55. https://doi.org/10.1080/00150193.2015.1011916
McKeown Walker, S., De La Torre, A., Bruno, F. Y., Tamai, A., Kim, T. K., Hoesch, M., Shi, M., Bahramy, M. S., King, P. D. C., & Baumberger, F. (2014). Control of a Two-Dimensional Electron Gas on SrTiO3 (111) by Atomic Oxygen. Physical Review Letters, 113(17), 177601. https://doi.org/10.1103/PhysRevLett.113.177601
Meza, U. R., Mendoza, B. S., & Mochán, W. L. (2019). Metamateriales nanoestructurados: avances en el cálculo de sus propiedades ópticas. Mundo Nano. Revista Interdisciplinaria En Nanociencias y Nanotecnología, 13(24), 1e-18e. https://doi.org/10.22201/ceiich.24485691e.2020.25.69611
Mohanty, S. K., Mohanty, H. S., Behera, B., Datta, D. P., Behera, S., & Das, P. R. (2019). Influence of NaNbO3 on the structural, optical and dielectric properties of 0.05(K 0.5 Bi 0.5 TiO3)–0.95(NaNbO3) composites ceramics. Journal of Materials Science: Materials in Electronics, 30(6), 5833–5844. https://doi.org/10.1007/s10854-019-00881-5
Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188–5192. https://doi.org/10.1103/PhysRevB.13.5188
Morales-García, Á., Valero, R., & Illas, F. (2017). An Empirical, yet Practical Way To Predict the Band Gap in Solids by Using Density Functional Band Structure Calculations. The Journal of Physical Chemistry C, 121(34), 18862–18866. https://doi.org/10.1021/acs.jpcc.7b07421
Perdew, J. P., Kurth, S., Zupan, A., & Blaha, P. (1999). Accurate density functional with correct formal properties: A step beyond the generalized gradient approximation. Physical Review Letters, 82(12), 2544–2547. https://doi.org/10.1103/PhysRevLett.82.2544
Perdew, J. P., Ruzsinszky, A., Tao, J., Staroverov, V. N., Scuseria, G. E., & Csonka, G. I. (2005). Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits. The Journal of Chemical Physics, 123(6), 062201. https://doi.org/10.1063/1.1904565
Prosandeev, S. A. (2005). Comparative analysis of the phonon modes in AgNbO3 and NaNbO3. Physics of the Solid State, 47(11), 2130–2134. https://doi.org/10.1134/1.2131156
Richard J. D. Tilley. (2016). Perovskites: Structure-Property Relationships. https://www.wiley.com/en-us/Perovskites%3A+Structure+Property+Relationships-p-9781118935668
Seeger, K. (2004). Semiconductor Physics Advanced Texts in Physics Springer-Verlag Berlin Heidelberg GmbH. In New York. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-09855-4
Tarun, M. C., Selim, F. A., & McCluskey, M. D. (2013). Persistent photoconductivity in strontium titanate. Physical Review Letters, 111(18), 187403. https://doi.org/10.1103/PhysRevLett.111.187403
Vatsyayan, R., Singh, R., & Paily, R. (2017). Adsorption of CO and NO on Ti-doped ZGNR structures: A DFT study. Proceedings of 2nd International Conference on 2017 Devices for Integrated Circuit, DevIC 2017, 509–513. https://doi.org/10.1109/DEVIC.2017.8074002
Velasco, J. G. (2009). Energías renovables (1st ed.).
Viñas, L. P. (2019). Dispositivos Optoelectrónicos: Tema 3: Semiconductores.
Zekry, A. (2017). How does band gap of a semiconductor change with the lattice constant? Please explain the physical significance. https://www.researchgate.net/post/How_does_band_gap_of_a_semiconductor_change_with_the_lattice_constant_Please_explain_the_physical_significance