Empleo de Nano-Ferritas dn Bioreactor Anaerobio para la Producción Eficiente de Biogás

Palabras clave: Hidrotermal, ferritas de níquel, digestión anaeróbica

Resumen

En el presente trabajo se prepararon polvos de ferrita de níquel (NiFe2O4) mediante el método hidrotermal. Se utilizaron como precursores sales de hierro y de níquel (FeCl3∙6H2O y NiCl2∙6H2O). Se empleó hidróxido de sodio (NaOH) para modificar el pH y como agente precipitante. Los polvos obtenidos se caracterizaron mediante difracción de rayos X (DRX), espectroscopia infrarroja por transformada de Fourier (FT-IR) y técnica de difracción láser. El análisis IR mostraron las bandas características de los enlaces Fe(III)-O-Ni(II), y MO-O. Situadas a 550 y 490 cm-1. Los patrones de difracción de rayos X revelan que los polvos de ferrita de níquel cristalizan en la fase cúbica. La solución de NaOH utilizada como disolvente en la reacción hidrotermal promueve una fase secundaria. Los tamaños de las partículas de ferrita de níquel fueron estimados en 20-40 μm empleando difracción laser. Se realizó un proceso de digestión anaeróbica y realiza su proyección de eficiencia en la obtención de metano.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abdallah, M. S., Hassaneen, F. Y., Faisal, Y., Mansour, M. S., Ibrahim, A. M., Abo-Elfadl, S., Salem, H. G., & Allam, N. K. (2019). Effect of Ni-Ferrite and Ni-Co-Ferrite nanostructures on biogas production from anaerobic digestion. Fuel, 254, 115673.

Ajay, C. M., Mohan, S., Dinesha, P., & Rosen, M. A. (2020). Review of impact of nanoparticle additives on anaerobic digestion and methane generation. Fuel, 277, 118234.

Almeida, T. P., Fay, M., Zhu, Y., & Brown, P. D. (2012). Hydrothermal synthesis and near in situ analysis of NiFe2O4 nanoparticles. Journal of Nanoscience and Nanotechnology, 12(11), 8797-8800.

Baniamerian, Z., Mehdipour, R., & Murshed, S. S. (2019). An experimental investigation of heat of vaporization of nanofluids. Journal of Thermal Analysis and Calorimetry, 138(1), 645-657.

de Dios, A. S., & Díaz-García, M. E. (2010). Multifunctional nanoparticles: Analytical prospects. Analytica chimica acta, 666(1-2), 1-22.

Gupta, N., Jain, P., Rana, R., & Shrivastava, S. (2017). Current development in synthesis and characterization of nickel ferrite nanoparticle. Materials Today: Proceedings, 4(2), 342-349.

Gustavsson, J., Yekta, S. S., Sundberg, C., Karlsson, A., Ejlertsson, J., Skyllberg, U., & Svensson, B. H. (2013). Bioavailability of cobalt and nickel during anaerobic digestion of sulfur-rich stillage for biogas formation. Applied energy, 112, 473-477.

Kumar A., Jacob B., Singh S. y Mohammed E., «Influence of preparation method on structural and magnetic properties of nickel ferrite nanoparticles,» Bulletin of Materials Science, vol. 34, nº 7, pp. 1345-1350, 2011.

Lee, D., Rubner, M. F., & Cohen, R. E. (2006). All-nanoparticle thin-film coatings. Nano letters, 6(10), 2305-2312.

Lucilha, A. C., Silva, M. R. da, Ando, R. A., Dall’Antonia, L. H., & Takashima, K. (2016). ZNO and AG-ZNO crystals: Synthesis, characterization, and application in heterogeneous photocatalysis. Química Nova, 39(4), 409-414.

Martirosyan, K. S., & Luss, D. (2011). U.S. Patent No. 7,897,135. Washington, DC: U.S. Patent and Trademark Office.

Mathkar, A., Tozier, D., Cox, P., Ong, P., Galande, C., Balakrishnan, K., Leela Mohana Reddy, A., & Ajayan, P. M. (2012). Controlled, stepwise reduction and band gap manipulation of graphene oxide. The journal of physical chemistry letters, 3(8), 986-991.

Nejati K. y Zabihi R., «Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method,» Chemistry Central Journal; 2012; 2-6; 6 (23);, vol. 6, nº 23, pp. 2-6, 2012.

Patil K. C., Aruna S. T. y Ekambaran S., «Combustion synthesis,» Current Opinion in Solid State and Materials Science, vol. 2, nº 1, pp. 158-165, 1997.

Randhawa, B. S., Dosanjh, H. S., & Kaur, M. (2005). Preparation of ferrites from the combustion of metal nitrate-oxalyl dihydrazide solutions.

Ren, D., Ang, B. S.-H., & Yeo, B. S. (2016). Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived Cu x Zn catalysts. Acs Catalysis, 6(12), 8239-8247.

Rice, A., Baird, E. W., & Eaton, R. B. (2017). APHA 2017 Standard Methods for Examination of Water and Wastewater (Washington: American Public Health Association, American Water Works Association, and Water Env. Federation ISBN).

Salavati-Niasari, M., Davar, F., & Mahmoudi, T. (2009). A simple route to synthesize nanocrystalline nickel ferrite (NiFe2O4) in the presence of octanoic acid as a surfactant. Polyhedron, 28(8), 1455-1458.

Stuart B., Infrared Spectroscopy: Fundamentals and Applications, England: Wiley, 2004, p. 143.

Sugimoto M., «The Past, Present, and Future of Ferrites,» Journal of the American Ceramic Society, vol. 82, nº 2, pp. 269-280, 1999.

Suresh, K., Kumar, N. R. S., & Patil, K. C. (1991). A novel combustion synthesis of spinel ferrites, orthoferrites and garnets. Advanced Materials, 3(3), 148-150..

Velimirovic, M., Schmid, D., Wagner, S., Micić, V., von der Kammer, F., & Hofmann, T. (2016). Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation. Science of The Total Environment, 563, 713-723.

Verma, A., Goel, T. C., & Mendiratta, R. G. (2000). Low temperature processing of NiZn ferrite by citrate precursor method and study of properties. Materials science and technology, 16(6), 712-715..

Videira-Quintela, D., Guillén, F., Montalvo, G., & Martin, O. (2020). Silver, copper, and copper hydroxy salt decorated fumed silica hybrid composites as antibacterial agents. Colloids and Surfaces B: Biointerfaces, 195, 111216.

Wu, J., Wang, H., Bao, L., Zhong, J., Chen, R., & Sun, L. (2018). Novel raspberry-like hollow SiO2@ TiO2 nanocomposites with improved photocatalytic self-cleaning properties: Towards antireflective coatings. Thin Solid Films, 651, 48-55.

Wypych, G. (2017). Handbook of odors in plastic materials. Elsevier.

Yu S. H. y Yoshimura M., «Direct Fabrication of Ferrite MFe2O4 (M ) Zn, Mg)/Fe Composite Thin Films by Soft Solution Processing,» Chemistry of Materials, vol. 1212, p. 3805–3810, 2000.

Yu, S., Wilson, A. J., Kumari, G., Zhang, X., & Jain, P. K. (2017). Opportunities and challenges of solar-energy-driven carbon dioxide to fuel conversion with plasmonic catalysts. ACS Energy Letters, 2(9), 2058-2070.

Zhongli Wang, Xiaojuan Liu, Minfeng Lv, Ping Chai, Yao Liu, and Jian Meng Preparation of Ferrite MFe2O4 (M = Co, Ni) Ribbons with Nanoporous Structure and Their Magnetic Properties,» The Journal of Physical Chemistry B, vol. 112, nº 36, p. 11292–11297, 2008

Publicado
2020-12-12
Cómo citar
Garrido-Hernández, A., Juárez-Rosas, K., Estrada-Martínez, R. J., Cerón-Montes, G. I., & Martínez-Valdez, F. J. (2020). Empleo de Nano-Ferritas dn Bioreactor Anaerobio para la Producción Eficiente de Biogás. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 8(Especial), 19-23. https://doi.org/10.29057/icbi.v8iEspecial.6356

Artículos más leídos del mismo autor/a

1 2 > >>