Hydrolysis of esters and dialkyl malonates mediated by t-BuNH2/LiBr/alcohol/H2O
Resumen
Se describe una metodología eficiente y sencilla para la hidrólisis de ésteres y monohidrólisis de malonatos de dialquilo con el uso de t-BuNH2/MeOH/H2O con y sin LiBr. El método es de aplicación general debido a que los ésteres de Me, Et, i-Pr, t-Bu, Bn y alilo se hidrolizan adecuadamente para dar los ácidos carboxílicos correspondientes en excelentes rendimientos. El alcance del procedimiento se exploró para la desprotección de monoésteres alifáticos, aromáticos e insaturados, así como de malonatos de dialquilo. Las reacciones son, en general, muy limpias, dan rendimientos altos y no se obtienen subproductos. La selectividad del método se demostró mediante la hidrólisis de ésteres en presencia de un grupo protector N-Boc.
Descargas
Citas
Andrés, G. O.; de Rossi, R. H. (2003) Mechanism of phthalate ester hydrolysis in water and in cyclodextrin mediated reactions. ARKIVOC, x, 127-138.
Andrés, G. O.; Pierini, A. B.; de Rossi, R. H. (2006) Kinetic and Theoretical Studies on the Mechanism of Intramolecular Catalysis in Phenyl Ester Hydrolysis. J. Org. Chem., 71, 7650-7656.
Barbayianni, E.; Fotakopoulou, I.; Schmidt, M.; Constantinou-Kokotou, V.; Bornscheuer, U. T.; Kokotos. G. (2005) Enzymatic Removal of Carboxyl Protecting Groups. 2. Cleavage of the Benzyl and Methyl Moieties. J. Org. Chem., 70, 8730-8733.
Bartoli, G.; Beleggia, R.; Giuli, S.; Giuliani, A.; Marcantoni, E.; Massaccesi, M.; Paoletti, M. (2006) The CeCl3·7H2O–NaI system as promoter in the synthesis of functionalized trisubstituted alkenes via Knoevenagel condensation. Tetrahedron Lett., 6501-6504.
Bartoli, G.; Bellucci, M. C.; Petrini, M.; Marcantoni, E.; Sambri, L.; Torregiani, E. (2000) An Efficient Procedure for the Diastereoselective Dehydration of β-Hydroxy Carbonyl Compounds by CeCl3·7H2O/NaI System. Org. Lett., 2, 1791-1793.
Barton, M. A.; Lemieux, R. U.; Savoie, J. Y. (1973) Solid-phase synthesis of selectively protected peptides for use as building units in the solid-phase synthesis of large molecules. J. Am. Chem. Soc., 95, 4501-4506.
Bhattacharya, S.; Kumari, N. (2009) Metallomicelles as potent catalysts for the ester hydrolysis reactions in water. Coordin. Chem. Rev., 253, 2133-2149.
Billamboz, M.; Bailly, F.; Cotelle, P. (2009) Facile synthesis of 4‐alkoxycarbonylisoquinoline‐1,3‐diones and 5‐alkoxycarbonyl‐2‐benzazepine‐1,3‐diones via a mild alkaline cyclization. J. Heterocyclic Chem., 46, 392-398.
Bordusa, F. (2002) Proteases in Organic Synthesis. Chem. Rev., 102, 4817-4867.
Brotzel, F.; Chu, Y. C.; Mayr, H. (2007) Nucleophilicities of Primary and Secondary Amines in Water. J. Org. Chem., 72, 3679-3688.
Chee, G.-L. (2001) Selective deprotection of isopropyl esters, carbamates and carbonates with aluminum chloride. Synlett, 1593-1595.
Delort, E.; Darbre, T.; Reynmond, J.-L. (2004) A Strong positive dendritic effect in a peptide dendrimer-catalyzed ester hydrolysis reaction. J. Am. Chem. Soc., 126, 15642-15643.
Dhar, D.; Beadham, I.; Chandrasekaran, S. (2003) Proline and benzylpenicillin derivatives grafted into mesoporous MCM-41: Novel organic–inorganic hybrid catalysts for direct aldol reaction. Proc. Indian Acad. Sci., 115, 365-372.
Durow, A. C.; Long, G. C.; O’Connell, S. J.; Willis, C. L. (2006) Total Synthesis of the Chlorinated Marine Natural Product Dysamide B. Org. Lett., 8, 5401-5404.
Fife, T. H.; Singh, R.; Bembi, R. (2002) Intramolecular general base catalyzed ester hydrolysis. The hydrolysis of 2-aminobenzoate esters. J. Org. Chem., 67, 3179-3183.
Firouzabadi, H.; Iranpoor, N.; Karimi, B. (1999) Lithium bromide-catalyzed highly chemoselective and efficient dithioacetalization of α,β-unsaturated and aromatic aldehydes under solvent-free conditions. Synthesis, 58-60.
Fotakopoulou, I.; Barbayianni, E.; Constantinou-Kokotou, V.; Bornscheuer, U.T.; Kokotos, G. (2007) Enzymatic Removal of Carboxyl Protecting Groups. III. Fast Removal of Allyl and Chloroethyl Esters by Bacillus subtilis Esterase (BS2). J. Org. Chem., 72, 782-786.
Fujita, T.; Ogino, K.; Tagaki, W. (1988) Bivalent Copper Ion Complex of a Novel Anionic Surfactant Having Functional Imidazole and Hydroxyl Groups as a Remarkably Active Model of Hydrolytic Metalloenzymes. Chem. Lett., 981-984.
Furlán, R. L. E.; Mata, E. G.; Mascaretti, O. A. (1998) Efficient, non-acidolytic method for the selective cleavage of N-Boc amino acid and peptide phenacyl esters linked to a polystyrene resin. J. Chem. Soc., Perkin Trans. 1, 355-358.
Ghosh, P.; Aubé, J. (2011) Resolution of Carboxylic Acids Using Copper(I)-Promoted Removal of Propargylic Esters under Neutral Conditions. J. Org. Chem., 76, 4168-4172.
Giusti, L. A.; Medeiros, M.; Ferreira, N. L.; Mora, J. R.; Fiedler, H. D. (2014) Polymers containing imidazole groups as nanoreactors for hydrolysis of esters. J. Phys. Org. Chem., 27, 297-302.
Greene, T. W.; Wuts, P. G. M. (1999) Protective Groups in Organic Synthesis, 3rd ed.; John Wiley and Sons: New York.
Guler, M. O.; Stupp, S. I. (2007) A self-assembled nanofiber catalyst for ester hydrolysis. J. Am. Chem. Soc., 129, 12082-12083.
Hu, Y. L.; Jiang, H.; Zhu, J.; Lu, M. (2011) Facile and efficient hydrolysis of organic halides, epoxides, and esters with water catalyzed by ferric sulfate in a PEG1000-DAIL[BF4]/toluene temperature-dependent biphasic system. New J. Chem., 35, 292-298.
Ilankumaran, P.; Verkade, J. G. (1999) P(RNCH2CH2)3N: Efficient Catalysts for Transesterifications, Acylations, and Deacylations. J. Org. Chem., 64, 3086-3089.
Iosub, V.; Haberl, A. R.; Leung, J.; Tang, M.; Vembaiyan, K.; Parvez, M.; Back, T. G. (2010) Enantioselective Synthesis of α-Quaternary Amino Acid Derivatives by Sequential Enzymatic Desymmetrization and Curtius Rearrangement of α,α-Disubstituted Malonate Diesters. J. Org. Chem., 75, 1612-1619.
Jarowicki, K.; Kocieński, P. (1999) Protecting groups. J. Chem. Soc., Perkin Trans. 1, 1589-1615.
Jarowicki, K.; Kocieński, P. (2001) Protecting groups. J. Chem. Soc., Perkin Trans. 1, 2109-2135.
Kabalka, G.; Wang, L.; Pagni, R. M. (2001). Potassium fluoride doped alumina: an effective reagent for ester hydrolysis under solvent free conditions. Green Chem., 3, 261-262.
Kadereit, D.; Waldmann, H. (2001) Enzymatic Protecting Group Techniques. Chem. Rev., 101, 3367-3396.
Kaul, R.; Brouillette, Y.; Sajjadi, Z.; Hansford, K. A.; Lubell, W. D. (2004) Selective tert-Butyl Ester Deprotection in the Presence of Acid Labile Protecting Groups with Use of ZnBr2. J. Org. Chem., 69, 6131-6133.
Kimura, E.; Shiota, T.; Koike, T.; Shiro, M.; Kodama, M. (1990) A Zinc(II) Complex of 1,5,9-Triazacyclododecane ([12]aneN3) as a Model for Carbonic Anhydrase. J. Am. Chem. Soc., 112, 5805-5811.
Kirsh J. F.; Jencks, W. P. (1964) Base Catalysis of Imidazole Catalysis of Ester Hydrolysis. J. Am. Chem. Soc., 86, 833-837.
Koshikari, Y.; Sakakura, A.; Ishihara, K. (2012) N,N-Diarylammonium Pyrosulfate as a Highly Effective Reverse Micelle-Type Catalyst for Hydrolysis of Esters. Org. Lett., 14, 3194-3197.
Kumar, I.; Jolly, R. S. (1999) Effect of the α-Methyl Substituent on Chemoselectivity in Esterase-Catalyzed Hydrolysis of S-Acetyl Sulfanylalkanoates. Org. Lett., 1, 207-209.
Lee, S. Y.; Lee, S.; Lee, J.; Lee, H. S.; Chang, J. H. (2013) Biomimetic magnetic nanoparticles for rapid hydrolysis of ester compounds. Mater. Lett., 110, 229-232.
Lesutis, H. P.; Gläser, R.; Liotta, C. L.; Eckert, C. A. (1999) Acid/base-catalyzed ester hydrolysis in near-critical water. Chem. Commun., 2063-2064.
Li, P.; Evans, C. D.; Wu, Y.; Cao, B.; Hamel, E.; Joullié, M. M. (2008) Evolution of the total syntheses of ustiloxin natural products and their analogues. J. Am. Chem. Soc., 130, 2351-2364.
Liotta, D.; Sunay, U.; Santiesteban, H.; Markiewicz, W. (1981) Phenyl Selenide Anion, a Superior Reagent for the SN2 Cleavage of Esters and Lactones. J. Org. Chem., 46, 2605-2610.
Long, W.; Jones, C. W. (2011) Hybrid Sulfonic Acid Catalysts Based on Silica-Supported Poly(Styrene Sulfonic Acid) Brush Materials and Their Application in Ester Hydrolysis. ACS Catal., 1, 674-681.
Ludwig, J.; Bovens, S.; Brauch, C.; Elfringhoff, A. S.; Lehr, M. (2006) Design and Synthesis of 1-Indol-1-yl-propan-2-ones as Inhibitors of Human Cytosolic Phospholipase A2 J. Med. Chem., 49, 2611-2620.
Mandal, P. K.; McMurray, J. S. (2007). Pd−C-Induced Catalytic Transfer Hydrogenation with Triethylsilane. J. Org. Chem., 72, 6599-6601.
Marcantoni, E.; Massaccesi, M.; Torregiani, E.; Bartolli, G.; Bosco, M; Sambri, L. (2001) Selective Deprotection of N-Boc-Protected tert-Butyl Ester Amino Acids by the CeCl3.7 H2O-NaI System in Acetonitrile. J. Org. Chem., 66, 4430-4432.
Mattsson, S.; Dahlström, M.; Karlsson, S. (2007) A mild hydrolysis of esters mediated by lithium salts. Tetrahedron Lett., 48, 2497-2499.
Minegishi, S.; Kobayashi, S.; Mayr, H. (2004) Solvent Nucleophilicity. J. Am. Chem. Soc., 126, 5174-5181.
Mirgorodskaya, A. B.; Yackevich, E. I.; Syakaev, V. V.; Zakharova, L. Y.; Latypov, S. K.; Konovalov, A. I. (2012) Micellization and Catalytic Properties of Cationic Surfactants with Head Groups Functionalized with a Hydroxyalkyl Fragment. J. Chem. Eng. Data, 57, 3153-3163.
Mojtahedi, M. M.; Akbarzadeh, E.; Sharifi, R.; Abaee, M. S. (2007) Lithium Bromide as a Flexible, Mild, and Recyclable Reagent for Solvent-Free Cannizzaro, Tishchenko, and Meerwein−Ponndorf−Verley Reactions. Org. Lett., 9, 2791-2793.
Morwick, T. M. (2006) High-Throughput Ester Hydrolysis with Catch-and-Release Isolation of Carboxylic Acids. J. Comb. Chem., 8, 649-651.
Nakamura, A.; Hamasaki, A.; Goto, S.; Utsunomiya, M.; Tokunaga, M. (2011) Irreversible Catalytic Ester Hydrolysis of Allyl Esters to Give Acids and Aldehydes by Homogeneous Ruthenium and Ruthenium/Palladium Dual Catalyst Systems. Adv. Synth. Catal., 353, 973-984.
Niwayama, S. (2000) Highly Efficient Selective Monohydrolysis of Symmetric Diesters. J. Org. Chem., 65, 5834-5836.
Niwayama, S.; Cho, H. (2009) Practical large scale synthesis of half-esters of malonic acid. Chem. Pharm. Bull., 57, 508-510 and references cited therein.
Niwayama, S.; Cho, H.; Lin, Ch. (2008) Highly efficient selective monohydrolysis of dialkyl malonates and their derivatives. Tetrahedron Lett., 4434-4436 and references cited therein.
Niwayama, S.; Cho, H.; Zabet-Moghaddam, Z.; Whittlesey, B. R. (2010) Remote Exo/Endo Selectivity in Selective Monohydrolysis of Dialkyl Bicyclo[2.2.1]heptane-2,3-dicarboxylate Derivatives. J. Org. Chem., 75, 3775-3780.
Niwayama, S.; Wang, H.; Hiraga, Y.; Clayton, J. C. (2007) Influence of co-solvents in the highly efficient selective monohydrolysis of a symmetric diester. Tetrahedron Lett., 48, 8508-8510.
Parish, E. J.; Miles, D. H. (1973) O-Alkyl cleavage of methyl esters by 1,5-diazabicyclo[5.4.0]undecene-5. J. Org. Chem., 38, 1223-1225.
Pearson, A. J.; Roush, W. R. (1999) Handbook of reagents for organic synthesis. Activating agents and protecting groups. Wiley: New York.
Pitsinos, E. N.; Athinaios, N.; Vidali, V. P. (2012) Enantioselective Total Synthesis of (−)-Laurenditerpenol. Org. Lett., 14, 4666-4669.
Poisson, J.-F.; Orellana, A.; Greene, A. E. (2005) Stereocontrolled Synthesis of (−)-Kainic Acid from trans-4-Hydroxy-L-proline. J. Org. Chem., 70, 10860-10863.
Polyzos, A.; Hughes, A. B.; Christie, J. R. (2007) Catalysis of Aryl Ester Hydrolysis in the Presence of Metallomicelles Containing a Copper(II) Diethylenetriamine Derivative. Langmuir, 23, 1872-1879.
Rajsfus, D. E.; Alter-Zilberfarb, S.; Frimer, A. A. (2013) The synthesis of fluorinated endcaps: Part 1. The effect of C-7 fluorination on the base-catalyzed monohydrolysis of 5-norbornenyl-2,3-diesters. J. Flourine Chem., 148, 49-58.
Salmar, S.; Cravotto, G.; Tuulmests, A.; Hagu, H. (2006) Effect of Ultrasound on the Base-Catalyzed Hydrolysis of 4-Nitrophenyl Acetate in Aqueous Ethanol. J. Phys. Chem. B, 110, 5817-5821.
Salomon, C. J.; Mata, E. G.; Mascaretti, O. A. (1994) Scope and Mechanism of Deprotection of Carboxylic Esters by Bis(tributyltin) Oxide. J. Org. Chem., 59, 7259-7266.
Saraswathy, V. G.; Sankararaman, S. (1994) Chemoselective Protection of Aldehydes as Dithioacetals in Lithium Perchlorate-Diethyl Ether Medium. Evidence for the Formation of Oxocarbenium Ion Intermediate from Acetals. J. Org. Chem., 59, 4665-4670.
Schmidt, M.; Barbayianni, E.; Fotakopoulou, I.; Höhne, M.; Constantinou-Kokotuou, V.; Bornscheuer, U. T.; Kokotos, G. (2005) Enzymatic Removal of Carboxyl Protecting Groups. 1. Cleavage of the tert-Butyl Moiety. J. Org. Chem., 70, 3737-3740.
Scrimin, P.; Tecilla, P.; Tonellato, U. (1992) Cationic Metallovesicles: Catalysis of the Cleavage of /7-Nitrophenyl Picolinate and Control of Copper(II) Permeation. J. Am. Chem. Soc., 114, 5086-5092.
Scrimin, P.; Tecilla, P.; Tonellato, U. (1994) Leaving Group Effect in the Cleavage of Picolinate Esters Catalyzed by Hydroxy-Functionalized Metallomicelles. J. Org. Chem., 59, 18-24.
Seebach, D.; Thaler, A.; Blaser, D.; Ko, S. Y. (1991). Transesterifications with 1,8‐Diazabicyclo[5.4.0]undec‐7‐ene/Lithium Bromide (DBU/LiBr) – Also Applicable to Cleavage of Peptides from Resins in Merrifleld Syntheses. Helv. Chim. Acta, 74, 1102-1118.
Suárez-Castillo, O. R.; Montiel-Ortega, L. A.; Fragoso-Vázquez, M. J.; Meléndez-Rodríguez, M.; Sánchez-Zavala, M. (2008) Transesterifications mediated by t-BuNH2. Tetrahedron Lett., 49, 996-999.
Um, I.-H.; Park, Y.-M.; Fujio, M.; Mishima, M.; Tsuno, Y. (2007) Aminolysis of Y-Substituted Phenyl X-Substituted Cinnamates and Benzoates: Effect of Modification of the Nonleaving Group from Benzoyl to Cinnamoyl. J. Org. Chem., 72, 4816-4821.
Watanabe, T.; Ishikawa, T. (1999) Mild air-oxidation of 1,3-dicarbonyl compounds with cesium salts: Novel α-hydroxylation accompanied by partial hydrolysis of malonate derivatives. Tetrahedron Lett., 40, 7795-7798.
Weijnen, J. G.; Koudijs, A. (1992) Synthesis of Chiral 1,10-Phenanthroline Ligands and the Activity of Metal-Ion Complexes in the Enantioselective Hydrolysis of N-Protected Amino Acid Esters. J. Org. Chem., 57, 7258-7265.
Wu, Y.-q.; Limburg, D. C; Wilkinson, D. E.; Vaal, M. J.; Hamilton, G. S. (2000) A mild deprotection procedure for tert-butyl esters and tert-butyl ethers using ZnBr2 in methylene chloride. Tetrahedron Lett., 41, 2847-2849.
Xia, J.; Xu, Y.; Li, S.-a.; Sun, W.-y.; Yu, K.-b.; Tang, W.-x. (2001) Carboxy Ester Hydrolysis Promoted by a Zinc(II) 2-[Bis(2-aminoethyl)amino]ethanol Complex: A New Model for Indirect Activation on the Serine Nucleophile by Zinc(II) in Zinc Enzymes. Inorg. Chem., 40, 2394-2401.
Yadav, J. S.; Subba Reddy, B. V.; Venkateshwara Rao, C.; Chand, P. K.; Prasad, A. R. (2002) A Facile and Selective Cleavage of Prenyl Esters Catalyzed by CeCl 3·7 H2O-NaI. Synlett, 137-139.