Medición de humedad en suelos, revisión de métodos y características

Palabras clave: Humedad del suelo, instrumentos de medición, metodologías de medición

Resumen

El agua es un recurso prioritario de estudio en varias ramas de la ciencia, incrementado por las dinámicas sociales. Es un factor determinante en la fertilidad del suelo, afectando el desarrollo de los cultivos, su disponibilidad da sustento a los procesos biológicos; también ayuda a regular la temperatura del suelo. En la actualidad se busca monitorear la cantidad de agua disponible, para optimizar su uso y controlar las propiedades del suelo. En el presente trabajo se hace una revisión de las propiedades eléctricas del suelo a partir del uso de diferentes métodos e instrumentos para la medición de la humedad. Los instrumentos para medición de humedad basados en propiedades eléctricas son fácilmente adaptables para ser automatizados y operados en forma remota. Este tipo de instrumentos, aunque requieren de mantenimiento y calibración, poseen buena precisión y un corto tiempo de muestreo, lo que da factibilidad a su aplicación a las ciencias agrícolas en particular para su uso en zonas de difícil acceso.

Descargas

La descarga de datos todavía no está disponible.

Citas

Adla, S., Rai, N. K., Karumanchi, S. H., Tripathi, S., Disse, M., & Pande, S. (2020). Laboratory Calibration and Performance Evaluation of Low-Cost Capacitive and Very Low-Cost Resistive Soil Moisture Sensors. Sensors, 20(2), 363. DOI: 10.3390/s20020363

Báez, S., Tristancho, J. L., Peña, D. Y., Vázquez, C., & Anaya, H. A. (2004). La espectroscopia de impedancia electroquímica (EIS) aplicada al estudio del mecanismo de la corrosión en caliente por sales fundidas. Dyna, 71(144), 39–47.

Berney, E. S., & Kyzar, J. D. (2012). Evaluation of Nonnuclear Soil Moisture and Density Devices for Field Quality Control. Transportation Research Record: Journal of the Transportation Research Board, 2310(1), 18–26. DOI: 10.3141/2310-03

Bhat, A. M., B, H. R., & Singh, D. N. (2007). A Generalized Relationship for Estimating Dielectric Constant of Soils. Journal of ASTM International, 4(7), 1–17. DOI: 10.1520/JAI100595

Bobrov, P. P., Belyaeva, T. A., Kroshka, E. S., & Rodionova, O. V. (2019). Soil Moisture Measurement by the Dielectric Method. Eurasian Soil Science, 52(7), 822–833. DOI: 10.1134/S106422931905003X

Böhme, B., Becker, M., & Diekkrüger, B. (2013). Calibrating a FDR sensor for soil moisture monitoring in a wetland in Central Kenya. Physics and Chemistry of the Earth, Parts A/B/C, 66, 101–111. DOI: 10.1016/j.pce.2013.09.004

Cruz, A. B., Barra, J. E., Castillo, R. F. del, & Gutiérrez, C. (2004). La calidad del suelo y sus indicadores. Ecosistemas, 13(2), Article 2. DOI: 10.7818/ECOS.572

Delta-T Devices Ltd. (2016). User Manual for the Profile Probe typePR2. https://delta-t.co.uk/wp-content/uploads/2017/02/PR2_user_manual_version_5.0.pdf

Dey, S., Kalansuriya, P., & Karmakar, N. C. (2015). A novel time domain reflectometry based chipless RFID soil moisture sensor. 2015 IEEE MTT-S International Microwave Symposium, 1–4. DOI: 10.1109/MWSYM.2015.7166925

Dobriyal, P., Qureshi, A., Badola, R., & Hussain, S. A. (2012). A review of the methods available for estimating soil moisture and its implications for water resource management. Journal of Hydrology, 458–459, 110–117. DOI: 10.1016/j.jhydrol.2012.06.021

Domingo-Santos, J., Villarán, R., Corral-Pazos-de-Provens, E., & Rapp-Arrarás, Í. (2008). Estimación de la capacidad de retención de agua en el suelo: Revisión del parámetro CRA. Investigación agraria. Sistemas y recursos forestales, ISSN 1131-7965, Vol. 15, No 1, 2006, pags. 14-23, 15.

Farahani, H., Wagiran, R., & Hamidon, M. (2014). Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review. Sensors, 14(5), 7881–7939. DOI: 10.3390/s140507881

Florentino, A. (2006). Métodos para medir el contenido de agua en el suelo. Venesuelos, 14(1), 48–70.

Fraden, J. (2016). Humidity and Moisture Sensors. En J. Fraden, Handbook of Modern Sensors (pp. 507–523). Springer International Publishing. DOI: 10.1007/978-3-319-19303-8_14

Gardner, C. M. K., Dean, T. J., & Cooper, J. D. (1998). Soil Water Content Measurement with a High-Frequency Capacitance Sensor. Journal of Agricultural Engineering Research, 71(4), 395–403. https://doi.org/10.1006/jaer.1998.0338

Gaskin, G. J., & Miller, J. D. (1996). Measurement of Soil Water Content Using a Simplified Impedance Measuring Technique. Journal of Agricultural Engineering Research, 63(2), 153–159. https://doi.org/10.1006/jaer.1996.0017

Guzzetti, F., Gariano, S. L., Peruccacci, S., Brunetti, M. T., Marchesini, I., Rossi, M., & Melillo, M. (2020). Geographical landslide early warning systems. Earth-Science Reviews, 200, 102973. https://doi.org/10.1016/j.earscirev.2019.102973

Juárez Badillo, E., & Rico Rodríguez, A. (2010). Mecánica de suelos. Limusa : Noriega.

Kargas, G., & Soulis, K. X. (2012). Performance Analysis and Calibration of a New Low-Cost Capacitance Soil Moisture Sensor. Journal of Irrigation and Drainage Engineering, 138(7), 632–641. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000449

Liu, L., Estiarte, M., & Peñuelas, J. (2019). Soil moisture as the key factor of atmospheric CH4 uptake in forest soils under environmental change. Geoderma, 355, 113920. https://doi.org/10.1016/j.geoderma.2019.113920

Motsara, M. R., & Roy, R. N. (2008). Guide to laboratory establishment for plant nutrient analysis. Food and Agriculture Organization of the United Nations.

Muñoz-Carpena, R. (2004). Field devices for monitoring soil water content. EDIS, 2004(8).

Rêgo Segundo, A., Martins, J., Monteiro, P., de Oliveira, R., & Freitas, G. (2015). A Novel Low-Cost Instrumentation System for Measuring the Water Content and Apparent Electrical Conductivity of Soils. Sensors, 15(10), 25546–25563. https://doi.org/10.3390/s151025546

Rinaldi, V. A., & Francisca, F. M. (1999). Impedance Analysis of Soil Dielectric Dispersion (1 MHz–1 GHz). Journal of Geotechnical and Geoenvironmental Engineering, 125(2), 111–121. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:2(111)

Robinson, D. A., Campbell, C. S., Hopmans, J. W., Hornbuckle, B. K., Jones, S. B., Knight, R., Ogden, F., Selker, J., & Wendroth, O. (2008). Soil Moisture Measurement for Ecological and Hydrological Watershed-Scale Observatories: A Review. Vadose Zone Journal, 7(1), 358–389. https://doi.org/10.2136/vzj2007.0143

Robinson, M., & Dean, T. J. (1993). Measurement of near surface soil water content using a capacitance probe. Hydrological Processes, 7(1), 77–86. https://doi.org/10.1002/hyp.3360070108

Robock, A., Vinnikov, K. Y., Srinivasan, G., Entin, J. K., Hollinger, S. E., Speranskaya, N. A., Liu, S., & Namkhai, A. (2000). The Global Soil Moisture Data Bank. Bulletin of the American Meteorological Society, 81(6), 1281–1299.

Rusu, C., Krozer, A., Johansson, C., Ahrentorp, F., Pettersson, T., Jonasson, C., Rösevall, J., Ilver, D., Terzaghi, M., Chiatante, D., & Montagnoli, A. (2019). Miniaturized wireless water content and conductivity soil sensor system. Computers and Electronics in Agriculture, 167, 105076. https://doi.org/10.1016/j.compag.2019.105076

Schmugge, T. J., Jackson, T. J., & McKim, H. L. (1980). Survey of methods for soil moisture determination. Water Resources Research, 16(6), 961–979. https://doi.org/10.1029/WR016i006p00961

Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., & Teuling, A. J. (2010). Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Science Reviews, 99(3–4), 125–161. https://doi.org/10.1016/j.earscirev.2010.02.004

Sinha, S., Norouzi, A., Pradhan, A., Yu, X., Seo, D.-J., & Zhang, N. (2017). A Field Soil Moisture Study Using Time Domain Reflectometry (TDR) and Time Domain Transmissivity (TDT) Sensors. DEStech Transactions on Materials Science and Engineering, ictim. https://doi.org/10.12783/dtmse/ictim2017/10109

Skierucha, W., & Wilczek, A. (2010). A FDR Sensor for Measuring Complex Soil Dielectric Permittivity in the 10–500 MHz Frequency Range. Sensors, 10(4), 3314–3329. https://doi.org/10.3390/s100403314

S.U., S. L., Singh, D. N., & Shojaei Baghini, M. (2014). A critical review of soil moisture measurement. Measurement, 54, 92–105. https://doi.org/10.1016/j.measurement.2014.04.007

Sulthoni, M. A., & Rizqulloh, M. A. (2019). A Low Cost Microcontroller-based Time Domain Reflectometer for Soil Moisture Measurement. 2019 International Conference on Electrical Engineering and Informatics (ICEEI), 197–200. https://doi.org/10.1109/ICEEI47359.2019.8988875

Topp, G. C., Davis, J. L., & Annan, A. P. (1980). Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Research, 16(3), 574–582. https://doi.org/10.1029/WR016i003p00574

van Dam, R. L., Borchers, B., & Hendrickx, J. M. H. (2005). Methods for prediction of soil dielectric properties: A review (R. S. Harmon, J. T. Broach, & J. H. Holloway, Jr., Eds.; p. 188). https://doi.org/10.1117/12.602868

Verwey, E. J. W. (1947). Theory of the Stability of Lyophobic Colloids. The Journal of Physical and Colloid Chemistry, 51(3), 631–636. https://doi.org/10.1021/j150453a001

Walker, J. P., Willgoose, G. R., & Kalma, J. D. (2004). In situ measurement of soil moisture: A comparison of techniques. Journal of Hydrology, 293(1–4), 85–99. https://doi.org/10.1016/j.jhydrol.2004.01.008

Whalley, W. R., Dean, T. J., & Izzard, P. (1992). Evaluation of the capacitance technique as a method for dynamically measuring soil water content. Journal of Agricultural Engineering Research, 52, 147–155. https://doi.org/10.1016/0021-8634(92)80056-X

Yu, X., & Yu, X. (2006). Time Domain Reflectometry Tests of Multilayered Soil. 17.

Zazueta, F. S., & Xin, J. (1994). Soil Moisture Sensors. 11.

Publicado
2021-07-05
Cómo citar
Caicedo-Rosero, L. C., Méndez-Ávila, F. de J., Gutiérrez-Zeferino, E., & Flores-Cuautle, J. de J. A. (2021). Medición de humedad en suelos, revisión de métodos y características. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 9(17), 1-8. https://doi.org/10.29057/icbi.v9i17.7035