Sondas fluorescentes, una revisión general: propiedades, diseño y aplicaciones
Resumen
Las sondas fluorescentes son compuestos químicos que presentan el fenómeno óptico de fluorescencia y son utilizados en la detección cualitativa y/o cuantitativa de una gran variedad de analitos. En consecuencia, se han convertido en una herramienta eficiente para la obtención de información dinámica sobre la localización y cuantificación de moléculas de interés. En este artículo, se describen conceptos generales alrededor de las sondas fluorescentes: historia, propiedades químicas y físicas, equipos de detección, características estructurales para el diseño y síntesis, mecanismos de acción frente a los analitos y algunas aplicaciones en el área de polímeros (elucidación de mecanismos, determinación de cinética, observación de cambios de morfología, etc.), en la obtención de imagen de tejidos y/o células en tiempo real en el área médico-biológica y en la detección de especies químicas potencialmente tóxicos, relacionados con la contaminación del medio ambiente
Descargas
Citas
Birks, J. B. (1976). Fluorescence quantum yield measurements. Journal of research of the National Bureau of Standards. Section A, Physics and chemistry, 80(3), 389. https://dx.doi.org/10.6028%2Fjres.080A.038
Bosch, P., Catalina, F., Corrales, T., and Peinado, C. (2005). Fluorescent probes for sensing processes in polymers. Chemistry–A European Journal, 11(15), 4314-4325. https://doi.org/10.1002/chem.200401349
Chen, W., Xian, M. (2020). Washington Red (WR) dyes and their imaging applications. Methods in Enzymology, 640, 149-163. https://doi.org/10.1016/bs.mie.2020.04.027
Corrales, T., Abrusci, C., Peinado, C., Catalina, F. (2004). Fluorescent sensor as physical amplifier of chemiluminescence: application to the study of poly (ethylene terephthalate). Macromolecules, 37(17), 6596-6605. https://doi.org/10.1021/ma0491917
Dai, Z. R., Ge, G. B., Feng, L., Ning, J., Hu, L. H., Jin, Q., Yang, L. (2015). A highly selective ratiometric two-photon fluorescent probe for human cytochrome P450 1A. Journal of the American Chemical Society, 137(45), 14488-14495. https://doi.org/10.1021/jacs.5b09854
Deng, M., Gong, D., Han, S. C., Zhu, X., Iqbal, A., Liu, W., ... & Guo, H. (2017). BODIPY based phenylthiourea derivatives as highly selective MeHg+ and Hg2+ ions fluorescent chemodosimeter and its application to bioimaging. Sensors and Actuators B: Chemical, 243, 195-202. https://doi.org/10.1016/j.snb.2016.11.139
Dong, B., Song, W., Lu, Y., Kong, X., Mehmood, A. H., Lin, W. (2019). An ultrasensitive ratiometric fluorescent probe based on the ICT-PET-FRET mechanism for the quantitative measurement of pH values in the endoplasmic reticulum (ER). Chemical Communications, 55(72), 10776-10779. https://doi.org/10.1039/C9CC03114F
Fricker, M. D., Plieth, C., Knight, H., Blancaflor, E., Knight, M. R., White, N. S., Gilroy, S. (1999). Fluorescence and luminescence techniques to probe ion activities in living plant cells. In Fluorescent and luminescent probes for biological activity (pp. 569-596). Academic press. https://doi.org/10.1016/B978-012447836-7/50044-0
Ge, Y., Liu, A., Ji, R., Shen, S., Cao, X. (2017). Detection of Hg2+ by a FRET ratiometric fluorescent probe based on a novel pyrido [1, 2-a] benzimidazole-rhodamine system. Sensors and Actuators B: Chemical, 251, 410-415. https://doi.org/10.1016/j.snb.2017.05.097
Hu, Y., Li, Q. Q., Li, H., Guo, Q. N., Lu, Y. G., & Li, Z. Y. (2010). A novel class of Cd (II), Hg (II) turn-on and Cu (II), Zn (II) turn-off Schiff base fluorescent probes. Dalton Transactions, 39(47), 11344-11352. https://doi.org/10.1039/C0DT00737D
Huang, K., He, S., Zeng, X. (2017). A fluoran-based fluorescent probe via a strategy of blocking the intramolecular photoinduced electron transfer (PET) process. Tetrahedron Letters, 58(20), 2004-2008. https://doi.org/10.1016/j.tetlet.2017.04.037
Jin, Q., Feng, L., Wang, D. D., Dai, Z. R., Wang, P., Zou, L. W., Yang, L. (2015). A two-photon ratiometric fluorescent probe for imaging carboxylesterase 2 in living cells and tissues. ACS applied materials & interfaces, 7(51), 28474-28481. https://doi.org/10.1021/acsami.5b09573
Jun, J. V., Chenoweth, D. M., Petersson, E. J. (2020). Rational design of small molecule fluorescent probes for biological applications. Organic & Biomolecular Chemistry, 18(30), 5747-5763. https://doi.org/10.1039/D0OB01131B
Kapuscinski, J. (1995). DAPI: a DNA-specific fluorescent probe. Biotechnic & Histochemistry, 70(5), 220-233. https://doi.org/10.3109/10520299509108199
Kasten, F. H. (1989). The origins of modern fluorescence microscopy and fluorescent probes. In Cell structure and function by microspectrofluorometry (pp. 3-50). Academic Press. https://doi.org/10.1016/B978-0-12-417760-4.50008-2
Kim, S. Y., Park, J., Koh, M., Park, S. B., Hong, J. I. (2009). Fluorescent probe for detection of fluoride in water and bioimaging in A549 human lung carcinoma cells. Chemical communications, (31), 4735-4737. https://doi.org/10.1039/B908745A
Kim, S. Y., Podder, A., Lee, H., Cho, Y. J., Han, E. H., Khatun, S., Bhuniya, S. (2020). Self-assembled amphiphilic fluorescent probe: detecting pH-fluctuations within cancer cells and tumour tissues. Chemical Science, 11(36), 9875-9883. https://doi.org/10.1039/D0SC03795H
Kojima, H., Nakatsubo, N., Kikuchi, K., Kawahara, S., Kirino, Y., Nagoshi, H., & Nagano, T. (1998). Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Analytical chemistry, 70(13), 2446-2453. https://doi.org/10.1021/ac9801723
Kopchuk, D. S., Prokhorov, A. M., Slepukhin, P. A., Kozhevnikov, D. N. (2012). Design of ICT-PET fluorescent probes for zinc (II) based on 5-aryl-2, 2′-bipyridines. Tetrahedron Letters, 53(46), 6265-6268. https://doi.org/10.1016/j.tetlet.2012.09.027
Kwon, N., Cho, M. K., Park, S. J., Kim, D., Nam, S. J., Cui, L., Yoon, J. (2017). An efficient two-photon fluorescent probe for human NAD (P) H: quinone oxidoreductase (hNQO1) detection and imaging in tumor cells. Chemical Communications, 53(3), 525-528. https://doi.org/10.1039/C6CC08971B
Kwon, N., Baek, G., Swamy, K. M. K., Lee, M., Xu, Q., Kim, Y., & Yoon, J. (2019). Naphthoimidazolium based ratiometric fluorescent probes for F− and CN−, and anion-activated CO2 sensing. Dyes and Pigments, 171, 107679. https://doi.org/10.1016/j.dyepig.2019.107679
Lichtman, J. W., Conchello, J. A. (2005). Fluorescence microscopy. Nature methods, 2(12), 910-919. https://doi.org/10.1038/nmeth817
Liu, H. W., Chen, L., Xu, C., Li, Z., Zhang, H., Zhang, X. B., Tan, W. (2018). Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chemical Society Reviews, 47(18), 7140-7180. https://doi.org/10.1039/C7CS00862G
Liu, W., Pu, S., Jiang, D., Cui, S., Liu, G., & Fan, C. (2011). Fluorescent probes for Al (III) and Cr (III) based on a photochromic diarylethene bearing a fluorescent rhodamine unit. Microchimica Acta, 174(3), 329-336. https://doi.org/10.1007/s00604-011-0610-7
Liu, W., Zhang, D., Ni, B., Li, J., Weng, H., Ye, Y. (2019). Mitochondria-targeted and FRET based ratiometric fluorescent probe for SO2 and its cell imaging. Sensors and Actuators B: Chemical, 284, 330-336. https://doi.org/10.1016/j.snb.2018.12.158
Masters, B. R. (2010). The development of fluorescence microscopy. eLS, Encyclopedia of Life sciences. Wiley. https://doi.org/10.1002/9780470015902.a0022093
Ortyl, J., Galek, M., Milart, P., Popielarz, R. (2012). Aminophthalimide probes for monitoring of cationic photopolymerization by fluorescence probe technology and their effect on the polymerization kinetics. Polymer Testing, 31(3), 466-473. https://doi.org/10.1016/j.polymertesting.2012.01.008
Paczkowski, J., Neckers, D. C. (1991). Twisted intramolecular charge-transfer phenomenon as a quantitative probe of polymerization kinetics. Macromolecules, 24(10), 3013-3016. https://doi.org/10.1021/ma00010a059
Peinado, C., Allen, N. S., Salvador, E. F., Corrales, T., Catalina, F. (2002). Chemiluminescence and fluorescence for monitoring the photooxidation of an UV-cured aliphatic polyurethane-acrylate based adhesive. Polymer degradation and stability, 77(3), 523-529. https://doi.org/10.1016/S0141-3910(02)00111-8
Renz, M. (2013). Fluorescence microscopy-A historical and technical perspective. Cytometry Part A, 83(9), 767-779. https://doi.org/10.1002/cyto.a.22295
Schäferling, M. (2012). The art of fluorescence imaging with chemical sensors. Angewandte Chemie International Edition, 51(15), 3532-3554. https://doi.org/10.1002/anie.201105459
Serrano, B., Baselga, J., Bravo, J., Mikes, F., Sese, L., Esteban, I., Pierola, I. F. (2000). Chemical imaging of phase-separated polymer blends by fluorescence microscopy. Journal of Fluorescence, 10(2), 135-135. https://doi.org/10.1023/A:1009439024969
Singha, S., Jun, Y. W., Sarkar, S., Ahn, K. H. (2019). An endeavor in the reaction-based approach to fluorescent probes for biorelevant analytes: Challenges and achievements. Accounts of chemical research, 52(9), 2571-2581. https://doi.org/10.1021/acs.accounts.9b00314
Tyson, J. A., Calatayud, D. G., Mirabello, V., Mao, B., Pascu, S. I. (2016). Labeling of graphene, graphene oxides, and of their congeners: imaging and biosensing applications of relevance to cancer theranostics. Advances in Inorganic Chemistry, 68, 397-440. https://doi.org/10.1016/bs.adioch.2015.09.007
Ueno, T., & Nagano, T. (2011). Fluorescent probes for sensing and imaging. Nature methods, 8(8), 642-645. https://doi.org/10.1038/nmeth.1663
Valdes-Aguilera, O., Pathak, C. P., Neckers, D. C. (1990). Pyrene as a fluorescent probe for monitoring polymerization rates. Macromolecules, 23(2), 689-692. https://doi.org/10.1021/ma00204a055
Valeur, B. (2003). Molecular fluorescence. Digital Encyclopedia of Applied Physics, 477-531. https://doi.org/10.1002/3527600434.eap684
Valeur, B., Berberan-Santos, M. N. (2011). A brief history of fluorescence and phosphorescence before the emergence of quantum theory. Journal of Chemical Education, 88(6), 731-738. https://doi.org/10.1021/ed100182h
Vendrell, M., Zhai, D., Er, J. C., Chang, Y. T. (2012). Combinatorial strategies in fluorescent probe development. Chemical reviews, 112(8), 4391-4420. https://doi.org/10.1021/cr200355j
Wysocki, L. M., Lavis, L. D. (2011). Advances in the chemistry of small molecule fluorescent probes. Current opinion in chemical biology, 15(6), 752-759. https://doi.org/10.1016/j.cbpa.2011.10.013
Xu, K., He, L., Yang, Y., Lin, W. (2019). A PET-based turn-on fluorescent probe for sensitive detection of thiols and H2S and its bioimaging application in living cells, tissues and zebrafish. New Journal of Chemistry, 43(7), 2865-2869. https://doi.org/10.1039/C8NJ04926B
Zhu, M., Xu, Y., Sang, L., Zhao, Z., Wang, L., Wu, X., Li, H. (2020). An ICT-based fluorescent probe with a large Stokes shift for measuring hydrazine in biological and water samples. Environmental Pollution, 256, 113427. https://doi.org/10.1016/j.envpol.2019.113427