Nuevos Retos Operativos para la Industria de Refinación en México
Resumen
Se estima que las emisiones anuales de gases tóxicos correspondientes al sector energético, incluyendo la industria de la refinación del petróleo son del 33%, por tal motivo, es importante implementar estrategias que mitiguen la emisión de Gases de Efecto Invernadero y al mismo tiempo se cumpla con la demanda energética. Normatividades aplicadas como la NOM-016-CRE-2016, para la calidad de combustibles petrolíferos han obligado al sector a considerar alternativas tecnológicas para mejorar la calidad de sus productos. Procesos como la hidrodesulfuración y la reformación de naftas permiten la eliminación de compuestos azufrados y un aumento en el octanaje de los combustibles mejorando su calidad. Son muchos los retos a los que se enfrenta la industria de la refinación, siendo la operación hacia la sustentabilidad uno de los principales porque se relaciona con la implementación de estrategias y metodologías de simbiosis industrial que permitan identificar interacciones entre procesos e industrias para un mejor aprovechamiento de recursos brindando beneficios mutuos.
Descargas
Citas
Abdellatief, T. M. M., Ershov, M. A., Kapustin, V. M., Ali Abdelkareem, M., Kamil, M., & Olabi, A. G. (2021). Recent trends for introducing promising fuel components to enhance the anti-knock quality of gasoline: A systematic review. Fuel, 291. doi:10.1016/j.fuel.2020.120112
Al-Qahtani, K. Y., & Elkamel, A. (2010). Planning and Integration of Refinery and Petrochemical Operations (1 ed.). Weinheim,Germany: Wiley-VCH.
Babich, I. V., & Moulijn, J. A. (2003). Science and technology of novel processes for deep desulfurization of oil refinery streams: a review☆. Fuel, 82(6), 607-631. doi:10.1016/S0016-2361(02)00324-1
Bathrinath, S., Abuthakir, N., Koppiahraj, K., Saravanasankar, S., Rajpradeesh, T., & Manikandan, R. (2021). An initiative towards sustainability in the petroleum industry: A review. Materials Today: Proceedings. doi:10.1016/j.matpr.2021.02.330
Cervo, H., Ferrasse, J.-H., Descales, B., & Van Eetvelde, G. (2020). Blueprint: A methodology facilitating data exchanges to enhance the detection of industrial symbiosis opportunities – application to a refinery. Chemical Engineering Science, 211, 115254. doi:10.1016/j.ces.2019.115254
Ciapetta, F. G., & Wallace, D. N. (1972). Catalytic naphtha reforming. Catalysis Reviews, 5(1), 67-158. doi:10.1080/01614947208076866
Duchêne, P., Mencarelli, L., & Pagot, A. (2020). Optimization approaches to the integrated system of catalytic reforming and isomerization processes in petroleum refinery. Computers & Chemical Engineering, 141. doi:10.1016/j.compchemeng.2020.107009
Norma Oficial Mexicana NOM-016-CRE-2016, Especificaciones de calidad de los petrolíferos., (2016).
Fahim, M. A., Alsahhaf, T. A., & Elkilani, A. (2010). Chapter 1 - Introduction. In M. A. Fahim, T. A. Alsahhaf, & A. Elkilani (Eds.), Fundamentals of Petroleum Refining (pp. 1-9). Amsterdam: Elsevier.
Hienuki, S. (2017). Environmental and socio-economic analysis of naphtha reforming hydrogen energy using input-output tables: A case study from Japan. Sustainability (Switzerland), 9(8), 1376. doi:10.3390/su9081376
Hongjun, Z., Mingliang, S., Huixin, W., Zeji, L., & Hongbo, J. (2010). Modeling and simulation of moving bed reactor for catalytic naphtha reforming. Petroleum Science and Technology, 28(7), 667-676. doi:10.1080/10916460902804598
Hou, W., Su, H., Mu, S., & Chu, J. (2007). Multiobjective optimization of the industrial naphtha catalytic reforming process. Chinese Journal of Chemical Engineering, 15(1), 75-80. doi:10.1016/S1004-9541(07)60036-6
Jafari, M., Rafiei, R., Amiri, S., Karimi, M., Iranshahi, D., Rahimpour, M. R., & Mahdiyar, H. (2013). Combining continuous catalytic regenerative naphtha reformer with thermally coupled concept for improving the process yield. International Journal of Hydrogen Energy, 38(25), 10327-10344. doi:10.1016/j.ijhydene.2013.06.039
Jonathan Otaraku, I. (2017). Optimization of Hydrogen Production from Nigerian Crude Oil Samples Through Continuous Catalyst Regeneration (CCR) Reforming Process Using Aspen Hysys. American Journal of Applied Chemistry, 5(5). doi:10.11648/j.ajac.20170505.11
Li, D. (2013). Crucial technologies supporting future development of petroleum refining industry. Chinese Journal of Catalysis, 34(1), 48-60. doi:10.1016/s1872-2067(11)60508-1
Liu, Y., Lu, S., Yan, X., Gao, S., Cui, X., & Cui, Z. (2020). Life cycle assessment of petroleum refining process: A case study in China. Journal of Cleaner Production, 256. doi:10.1016/j.jclepro.2020.120422
Mustafa, J., Ahmad, I., Ahsan, M., & Kano, M. (2017). Computational fluid dynamics based model development and exergy analysis of naphtha reforming reactors. International Journal of Exergy, 24(2-4), 344-363. doi:10.1504/IJEX.2017.087696
Oware Sarfo, K., Clauser, A. L., Santala, M. K., & Árnadóttir, L. (2021). On the atomic structure of Pt(111)/γ-Al2O3(111) interfaces and the changes in their interfacial energy with temperature and oxygen pressure. Applied Surface Science, 542, 148594. doi:10.1016/j.apsusc.2020.148594
Rahimpour, M. R., Jafari, M., & Iranshahi, D. (2013). Progress in catalytic naphtha reforming process: A review. Applied Energy, 109, 79-93. doi:10.1016/j.apenergy.2013.03.080
Sadighi, S., & Mohaddecy, R. S. (2013). Predictive modeling for an industrial naphtha reforming plant using artificial neural network with recurrent layers. International Journal of Technology, 4(2), 102-111. doi:10.14716/ijtech.v4i2.106
Saleh, T. A. (2020). Characterization, determination and elimination technologies for sulfur from petroleum: Toward cleaner fuel and a safe environment. Trends in Environmental Analytical Chemistry, 25. doi:10.1016/j.teac.2020.e00080
Samimi, A., Zarinabadi, S., Kootenaei, A. H. S., Azimia, A., & Mirzaeia, M. (2020). Kinetic Overview of Catalytic Reforming Units (Fixed and Continuous Reforming). Chemical Methodologies, 4, 245-257. doi:10.33945/SAMI/CHEMM.2020.3.3
Speight, J. G. (2011a). Chapter 2 - Refining Processes. In J. G. Speight (Ed.), The Refinery of the Future (pp. 39-80). Boston: William Andrew Publishing.
Speight, J. G. (2011b). Chapter 8 - Hydrotreating and Desulfurization. In J. G. Speight (Ed.), The Refinery of the Future (pp. 237-273). Boston: William Andrew Publishing.
Speight, J. G., & Baki, Ö. (2002). Petroleum Refining Processes. Basel, Switzerland: Marcel Dekker, Inc.
Wang, L., Li, D., Han, F., Zhu, Y., Zhang, M., & Li, W. (2018). Experimental optimization and reactor simulation of coal-derived naphtha reforming over Pt–Re/Γ-Al2O3 using design of experiment and response surface methodology. Reaction Kinetics, Mechanisms and Catalysis, 125(1), 245-269. doi:10.1007/s11144-018-1403-3
Weifeng, H., Hongye, S., Shengjing, M., & Jian, C. (2007). Multiobjective Optimization of the Industrial Naphtha Catalytic Reforming Process* * Supported by the National Natural Science Foundation of China (No.60421002). Chinese Journal of Chemical Engineering, 15(1), 75-80. doi:10.1016/S1004-9541(07)60036-6
Yukesh Kannah, R., Kavitha, S., Preethi, Parthiba Karthikeyan, O., Kumar, G., Dai-Viet, N. V., & Rajesh Banu, J. (2021). Techno-economic assessment of various hydrogen production methods - A review. Bioresour Technol, 319, 124175. doi:10.1016/j.biortech.2020.124175
Yusuf, A. Z., John, Y. M., Aderemi, B. O., Patel, R., & Mujtaba, I. M. (2020). Effect of hydrogen partial pressure on catalytic reforming process of naphtha. Computers and Chemical Engineering, 143. doi:10.1016/j.compchemeng.2020.107090
Zainullin, R. Z., Zagoruiko, A. N., Koledina, K. F., Gubaidullin, I. M., & Faskhutdinova, R. I. (2020). Multi-Criterion Optimization of a Catalytic Reforming Reactor Unit Using a Genetic Algorithm. Catalysis in Industry, 12(2), 133-140. doi:10.1134/s2070050420020129