Recuperación de oro y metales base a partir de desechos de placas de circuitos impresos
Resumen
Este estudio experimental a escala laboratorio, presenta un novedoso proceso combinado hidrometalúrgico y electrometalúrgico para la recuperación de oro y metales no preciosos (Cu, Ni, Pb y Zn), a partir de desechos de placas de circuitos impresos (DPCI). Primero, se llevo a cabo una lixiviación de los pines de los DPCI y una completa extracción de oro se obtuvo usando H2SO4 0.5 M (pH ≈ 1.5)/O2 (1 atm) en el rango de temperatura de 288 a 343 K. Las energías de activación encontradas muestran valores de 97.2 kJ∙mol-1, 86 kJ∙mol-1 y 93.6 kJ∙mol-1 para Cu, Ni y Zn, respectivamente. Posteriormente, el licor de lixiviación fue tratado electroquímicamente en varias condiciones: la remoción selectiva de Cu y Pb se realizó a PH 1.5, y la remoción de Ni y Zn también se obtuvo cuando el pH aumentó a 5. Todos los procesos involucrados aquí son amigables con el medio ambiente e, incluso el licor final podría ser reutilizado.
Descargas
Citas
Babel, S. and Kurniawan, T.A., (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: A review. Journal of Hazardous Materials 97 (1-3), 219–243 DOI: 10.1016/S0304-3894(02)00263-7
Behnamfard, A., Salarirad, M.M. and Veglio, F., (2013). Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation. Waste Management 33 (11), 2354–2363. DOI: 10.1016/j.wasman.2013.07.017
Birloaga, I., Michelis, I.D., Ferella, F., Buzatu, M. and Veglio, F., (2013). Study on the influence of various factors in the hydrometallurgical processing of waste printed circuit boards for copper and gold recovery. Waste Management, 33 (4), 935–941. DOI: 10.1016/j.wasman.2013.01.003
Blais, J.F., Djedidi, Z., Cheikh, R.B., Tyagi, R.D. and Mercier, C., (2008). Metals precipitation from Effluents: Review. Practice and Periodical of Hazardous, Toxic, and Radioactive Waste Management, 13 (3), 135. DOI:10.1061/(ASCE)1090-025X(2008)12:3(135)
Chen, G., (2004). Electrochemical technologies in wastewaters treatment. Separation and Purification Technology, 38 (1), 11-41. DOI: 10.1016/j.seppur.2003.10.006
Coman, V., Robotin, B., Ilea, P., (2013). Nickel recovery/removal from industrial wastes: A review. Resourses, Conservation and Recycling, 73, 229-238. DOI: 10.1016/j.resconrec.2013.01.019
Cui, J. and Zhang, L., (2008). Metallurgical recovery of metals from electronic waste: A review. Journal of Hazardous Materials, 158 (1-2), 228-256. DOI: 10.1016/j.jhazmat.2008.02.001
Dąbrowski, A., Hubicki, Z., Podkościelny, P. and Robens, E., (2004). Selective removal of the heavy metals ions from waters and industrial wastewaters by ion exchange method. Chemosphere, 56 (2), 91-106. DOI: 10.1016/j.chemosphere.2004.03.006
Dimitrakakis, E., Janz, A., Bilitewski, B. and Gidarakos, E., (2009). Small WEEE: Determining recyclables and hazardous substances in plastics. Journal of Hazardous Materials, 161 (2–3), 913-919. DOI: 10.1016/j.jhazmat.2008.04.054
Elkhatabi, F., Benballa, M. and Müller, C., (1999). Dependence of coating characteristics on deposition potential for electrodeposited Zn-Ni alloys. Electrochemica Acta, 44 (10), 1645-1653. DOI: 10.1016/S0013-4686(98)00286-2
E. U. Directive, Official Journal of the European Union L, 37 (2002) 24
Friege, H., (2012). Review of material recovery from used electric and electronic equipment-alternative options for resource conservation. Waste management & Research: The Journal for Sustainable Circular Economy vil. 30 issue 9, 3-16. DOI: 10.1177/0734242X12448521
Fu, F. and Wuang, Q., (2011). Removal of heavy metals ion from wastewaters: A review. Journal of Environmental Management, 92 (3), 407-418. DOI: 10.1016/j.jenvman.2010.11.011
Gómez, E., Alcobe, X. and Vallés, E., (2001). Characterisation of zinc + cobalt alloys phases obtained by electrodeposition. Journal of Electroanalytic Chemistry, 505 (1-2), 54-61. DOI: 10.1016/S0022-0728(01)00450-8
Gómez, E. and Vallés, E., (1997). Electrodeposition of zn + cobalt alloys: initiations and development of anomalous co-deposition. Journal of Electroanalytic Chemistry, 421 (1-2), 157-163. DOI: 10.1016/S00222-0728(96)04835-8
Guo, C., Wuang, H., Liange, W., Fu, J. and Yi, X., (2011). Liberation characteristics and physical separation of printed circuit board (PCB). Waste management, 31 (9-10), 2161-2166. DOI: 10.1016/j.wasman.2012.05.011
Ha, V.H., Lee, J.C., Jeong, J., Hai, H.T. and Jha, M.K., (2010). Thiosulfate leaching of gold from waste mobile phones. Journal of Hazardous Materials, 178 (1-3), 1115-1119. DOI: 10.1016/j.jhazmat.2010.01.099
Hadi, P., Xu, M., Lin, C.S.K., Hui, C.W. and McKay, G., (2015). Waste printed circuit boards recycling techniques and product utilization. Journal of Hazardous Materials, 238, 234-243. DOI: 10.1016/j.jhazmat.2014.09.032
Hahladakis, J.N., Stylianos, M. and Gidarakos, E., (2013). Assessment of released heavy metals from electrical and electronic equipment (EEE) existing in shipwrecks through laboratory-scale simulation reactor. Journal of Hazardous Materials, 250-251, 256-264. DOI: 10.1016/j.jhazmat.2013.02.005
He, W., Li, G., Ma, X., Wang, H., Huang, J., Xu, M. and Huang, C., (2006). WEEE recovery strategies and the WEEE treatment status in China. Journal of Hazardous Materials, 136 (3), 502-512. DOI: 10.1016/j.jhazmat.2006.04.060
Herat, S. and Agamuthu, P., (2012). E-waste: a problem or an opportunity? Review of issues, challenges and solutions in Asian countries. Waste Management & Research: The Journal for a Sustainable Circular Economy, 30, 1113. DOI: 10.1177/0734242X12453378
Lee, C.H., Chang, C.T., Fan, K.S. and Chang T.C., (2004). An overview of recycling and treatment of scrap computers. Journal of Hazardous Materials, 114 (1-3), 93-100. DOI: 10.1016/j.jhazmat.2004.07.013
Li, J., Lu, H., Guo, J., Xu, Z. and Zhuo, Y., (2007). Recycle Technology for Recovering Resources and Products from Waste Printed Circuit Boards. Environmental Science & Technology, 41(6), 1995-2000. DOI: 10.1021/es0618245
Long, Y.Y., Feng, Y.J., Cai, S.S., Ding, W.X. and Shen, D.S., (2013). Flow analysis of heavy metals in a pilot-scale incinerator for residues from waste electrical and electronic equipment dismantling. Journal of Hazardous Materials, 261, 427-434. DOI: 10.1016/j.jhazmat.2013.07.070
Miranda, F.J.F., Barcia, O.E., Diaz, S.L., Mateos, O.R. and Wiart, R., (1996). Electrodeposition of Zn-Ni alloys in sulfate electrolytes. Electrochemica Acta, 41 (7-8), 1041-1049. DOI: 10.1016/0013-4686(95)00436-X
Mooiman, M.B., Sole, K.C. and Kinneberg, D.J., (2005). Challenging the traditional Hydrometallurgy curriculum - an industrial perspective. Hydrometallurgy, 79 (1-2), 80-88. DOI: 10.1016/j.hydromet.2004.11.013
Morera, E., (2004). Lixiviación de metales con ozono acuoso. Cinética de la plata y el oro. Aplicaciones. Ph. D. Thesis, Universitat de Barcelona, España (In Spanish).
Morf, L.S., Tremp, J., Gloor, R., Huber, Y., Stengele, M. and Zennegg, M., (2005). Brominated Flame Retardants in Waste Electrical and Electronic Equipment: Substance Flows in a Recycling Plant. Environmental Science & Technology, 39(22), 8691-8699. DOI: 10.1021/es051170k
Reyes, M.I., Rivera, I., Patiño, F., Flores, M.U. and Reyes, M., (2012). Total Recovery of Gold Contained in Computer Printed Circuit Boards. Leaching Kinetics of Cu, Zn and Ni. Journal of the Mexican Chemical Society, 56 (2), 144-148. DOI: 10.29356/jmcs.v56i2.312
Sánchez, M.M., (2010). Cinética de lixiviación de Cu, Zn y Ni, contenidos en circuitos impresos de computadora, Recuperación de oro. B.Sc. Thesis (In Spanish), Universidad Autónoma del Estado de Hidalgo, México.
Schluep, M., Hagelueken, C., Kuehr, R., Magalini, F., Maurer, C., Meskers, C., Mueller, E. and Wang F., (2009). Recycling: from E-waste to Resources. UNEP and United Nations University. 1 - 120. https://www.researchgate.net/publication/278849195_Recycling_-_from_e-waste_to_resources
Schwarzer, S., De Bono, A., Giuliani, G., Kluser, S. and Peduzzi, P., (2005). E-waste, the hidden side of IT equipment´s manufacturing and use. Environment Alert Bulletin, 5, 1-5. https://archive-ouvert.inige.ch/unige:23132
Sodhi, M.S. & Reimer, B., (2001). Model for recycling electronics end-of-life products. OR-Spektrum, 23, 97-115. DOI: 10.1007/PL00013347
Sum, E.Y.L., (1991). The recovery of metals from electronic scrap. Journal Of Materials, 43, 53-61. DOI: 10.1007/BF03220549
Syed, S., (2006). A green technology for recovery of gold from non-metallic secondary sources. Hydrometallurgy, 82 (1-2), 48-53. DOI: 10.1016/j.hydromet.2006.01.004
Syed, S., (2012). Recovery of gold from secondary sources - A review. Hydrometallurgy, 115-116, 30-51. DOI: 10.1016/j.hydromet.2011.12.012
Tuncuk, A., Stazi, V., Akcil, A., Yazici, E.Y. and Deveci, H., (2012). Aqueous metal recovery techniques from e-scrap: Hydrometallurgy in recycling. Minerals Engineering, 25 (1), 28-37. DOI: 10.1016/j.mineng.2011.09.019
United States Environment Protection Agency, W.H.C.o.E.Q., 20 July 2011. National Strategy For Electronics Stewardship. Interagency Task Force on Electronics Stewardship, United States Environment Protection Agency US EPA. https://www.epa.gov/sites/production/files/2015-09/documents/national_strategy_for_electronic_stewardship_0.pdf
Veglio, F., Ferella, F., Michelis, I.De., Furlani, G., Navarra, M., Pagnanelli, F. & Beolchini, F., (2006). Recovery of zinc and manganese from spent batteries. In Conference ECOMONDO Rimini Fiera, Italy, pp. 8-11
Velichenko, A.B., Portillo, J., Alcobé, X., Sarret, M. and Müller, C., (2000). Nature of anode passivation in Zn-Ni electroplating baths. Electrochimica Acta, 46 (2-3), 407-414. DOI: 10.1016/S0013-4686(00)00599-5
Wang, X. and Gaustad, G., (2012). Prioritizing material recovery for end-of-life printed circuit boards. Waste Management, 32 (10), 1903-1913. DOI: 10.1016/j.wasman.2012.05.005
Yang, H., Liu, J. and Yang, J., (2011). Leaching copper from shredded particles of waste printed circuit boards. Journal of Hazardous Materials, 187 (1-3), 393-400. DOI: 10.1016/j.jhazmat.2011.01.051
Zamboulis, D., Peleka, E.N., Lazaridis, N.K. and Matis, K.A., (2011). Metal ion separation and recovery from environmental sources using various flotation and sorption techniques. Journal of Chemical Technology and Biotechnology, 86 (3), 335-344. DOI: 10.1002/jctb.2552
Zheng, Y., Shen, Z., Ma, S., Cai, C., Zhao, X. and Xing, Y., (2009). A novel approach to recycling of glass fibers from nonmetal materials of waste printed circuit boards. Journal of Hazardous Materials, 170 (2-3), 978-982. DOI: 10.1016/j.jhazmat.2009.05.065
Zhuo, X., Guo, J., Lin, K., Huang, K. and Deng, J., (2013). Leaching characteristics of heavy metals and brominated flame retardants from waste printed circuit boards. Journal of Hazardous Materials, 246-247, 96-102. DOI: 10.1016/j.jhazmat.2012.11.065
Zhuo, Y. and Qiu, K., (2010). A new technology for recycling materials from waste printed circuit boards. Journal of Hazardous Materials, 175 (1-3), 823-828. DOI: 10.1016/j.jhazmat.2009.10.083