Efecto del tratamiento térmico a baja temperatura para la obtención de películas delgadas de SnO
Resumen
Por sus ventajas, el SnO es un óxido semiconductor (OMS) usado en transistores de película delgada (TFTs) de canal-p y considerado para aplicaciones flexibles y transparentes. Aunque se deposita por varias técnicas, suele aplicarse un recocido >200 °C para obtenerlo, que es incompatible con la fabricación de TFTs con OMS tipo-n y con sustratos flexibles y transparentes. Aquí mostramos el efecto de la presión parcial de oxígeno (OPP) y del recocido ≤200 °C en las propiedades estructurales, ópticas, composicionales y eléctricas de las capas depositadas por pulverización catódica. Una OPP al 9% y un recocido entre 190 y 200 °C indujeron una mezcla de fases entre el estaño metálico y el SnO con orientación hacia diferentes planos, una transmitancia hasta de 36% en el espectro UV/Vis, un ancho de banda óptico de ~2.83 eV y una resistividad de 1 mΩ×cm. Esto coincide con los datos reportados del SnO tipo-p, lo que también posibilita su compatibilidad con la fabricación de TFTs con OMS tipo-n.
Descargas
Citas
Allen, J. P., et al., (2013). Understanding the defect chemistry of tin monoxide. Journal of Materials Chemistry C 1, 48, 8194–8208. DOI: 10.1039/C3TC31863J
Baco, S., et al., (2012). Study on Optical Properties of Tin Oxide Thin Film at Different Annealing Temperature. Journal of Science and Technology 40, 1, 61–72.
Banerjee, A. N., Chattopadhyay, K. K., (2005). Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films. Progress in Crystal Growth and Characterization of Materials 50, 1–3, 52–105. DOI: 10.1016/j.pcrysgrow.2005.10.001
Batzill, M., Diebold, U., (2005). The surface and materials science of tin oxide. Progress in Surface Science 79, 2–4, 47–154. DOI: 10.1016/j.progsurf.2005.09.002
Caraveo, J. A., et al., (2013). Record mobility in transparent p-type tin monoxide films and devices by phase engineering. ACS Nano 7, 6, 5160–5167. DOI: 10.1021/nn400852r
De Barros, A. R. X., (2014). Development of p-type oxide semiconductors based on tin oxide and its alloys: application to thin film transistors. Ph.D. dissertation, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal.
Fortunato, E., et al., (2010). Transparent p-type SnOx thin film transistors produced by reactive rf magnetron sputtering followed by low temperature annealing. Applied Physic Letters 97, 5, 1–4. DOI: 10.1063/1.3469939
Fortunato, E., et al., (2012). Oxide semiconductor thin-film transistors: A review of recent advances. Advanced Materials 24, 22, 2945–2986. DOI: 10.1002/adma.201103228
Golovashkin, A. I., Motulevich, G. P., (1965). Optical properties of Tin at helium temperatures. Sovietic Physics JETP 20, 1, 46–49.
Guzman, D., et al., (2018). Fully patterned p-channel SnO TFTs using transparent Al2O3 gate insulator and ITO as source and drain contacts. Semiconductor Science and Technology 33, 3, 1–8. DOI: 10.1088/1361-6641/aaa7a6
Guzman, D., et al., (2018). Optical properties of p-type SnOx thin films deposited by DC reactive sputtering. Journal of Materials Science: Materials in Electronics 30, 1366–1373. DOI: 10.1007/s10854-018-0406-1
Li, Y., et al., (2018). Ambipolar SnOx thin-film transistor achieved at high sputtering power. Applied Physics Letters 112, 18, 1–4. DOI: 10.1063/1.5022875
Liang, L. Y., et al., (2010). Phase and Optical Characterizations of Annealed SnO Thin Films and Their p-Type TFT Application service Phase and Optical Characterizations of Annealed SnO Thin Films and Their p-Type TFT Application. Journal of Electrochemical Society 157, 6, 598–603. DOI: 10.1149/1.3385390
Liu, Q., et al., (2015). Tunable crystallographic grain orientation and Raman fingerprints of polycrystalline SnO thin films. Journal of Materials Chemistry C 3, 5, 1077–1081. DOI: 10.1039/C4TC02184C
Lorenz, M., et al., (2016). The 2016 oxide electronic materials and oxide interfaces roadmap. Jornal of Physics D: Applied Physics 49, 43, 1–53. DOI: 10.1088/0022-3727/49/43/433001
Luo, H., et al., (2012). Structural, Chemical, Optical, and Electrical Evolution of SnOx Films Deposited by Reactive rf Magnetron Sputtering. ACS Applied Materials and Interfaces 4, 5673–5677. DOI: 10.1021/am301601s
Meyer, M., (2001). Ab initio pseudopotential calculation of the equilibrium structure of tin monoxide. Physical Review B 64, 4, 1–9. DOI: 10.1103/PhysRevB.64.045119
Nomura, K., et al., (2004). Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 7016, 488–492. DOI: 10.1038/nature03090
Nomura, K., et al., (2011). Ambipolar Oxide Thin-Film Transistor. Advanced Materials 23, 30, 3431–3434. DOI: 10.1002/adma.201101410
Pan, X. Q., Fu, L., (2001). Tin oxide thin films grown on the (1012) sapphire substrate. Journal of Electroceramics 7, 35–46. DOI: 10.1023/A:1012270927642
Park, J. W., et al., (2019). A Review of Low-Temperature Solution-Processed Metal Oxide Thin-Film Transistors for Flexible Electronics. Advanced Functional Materials 30, 20, 1–40. DOI: 10.1002/adfm.201904632
Shan, F., et al., (2016). High-mobility p-type NiOx thin-film transistors processed at low temperatures with Al2O3 high-k dielectric. Journal of Material Chemistry C 40, 9438–9444. DOI: 10.1039/C6TC02137A
Tauc, J., Menth, A., (1972). States in the Gap. Journal of Non-Cristalline Solids 8–10, 569–585. DOI: 10.1016/0022-3093(72)90194-9
Wang, Z., et al., (2016). Recent Developments in p-Type Oxide Semiconductor Materials and Devices. Advanced Materials 28, 20, 3831–3892. DOI: 10.1002/adma.201503080
Wu, M.-H., et al., (2019). Submicrometer p-Type SnO Thin-Film Transistors Fabricated by Film Profile Engineering Method. IEEE Transactions on Electron Devices 66, 4, 1766–1771. DOI: 10.1109/TED.2019.2897813
Yang, T., et al., (2015). Preparation and characterization of p-type transparent conducting SnO thin films. Materials Letters 139, 39–41. DOI: 10.1016/j.matlet.2014.10.040
Zhong, C.-W., et al., (2016). Impact of thermal oxygen annealing on the properties of tin oxide films and characteristics of p-type thin-film transistors. Japanese Journal of Applied Physics 55, 1–5. DOI: 10.7567/JJAP.55.016501