Diseño de un espectrofotómetro UV-VIS de bajo costo para la industria bioquímica: Una Revisión

  • Francisco Jacob Avila-Camacho Tecnológico de Estudios Superiores de Ecatepec https://orcid.org/0000-0002-0086-5827
  • Leonardo Miguel Moreno-Villalba Tecnológico de Estudios Superiores de Ecatepec https://orcid.org/0000-0003-0937-3586
  • Genaro Iván Cerón-Montes Universidad Tecnológica de Tecámac
  • Aristeo Garrido-Hernández Universidad Tecnológica de Tecámac
  • Cesar Andrés Cardoso-Chávez Tecnológico de Estudios Superiores de Ecatepec
  • Carlos Jossef Pacheco-Piña Tecnológico de Estudios Superiores de Ecatepec
Palabras clave: Espectrofotómetro, técnicas de medición, medición de adsorción, luz ultravioleta visible

Resumen

Los sistemas de espectrofotometría requeridos comúnmente tanto en áreas de investigación como en industrias químicas y de materiales resultan ser equipos costosos para laboratorio que en muchas ocasiones se vuelve inviable la adquisición de estos, además de que en varias de las aplicaciones también se requiere portabilidad para realizar mediciones en campo y que los mismos pudieran ser de amplio espectro. En este trabajo se llevó a cabo una revisión de diversos proyectos de desarrollo de dispositivos de espectrofotometría que van desde prototipos académicos hasta productos industriales utilizando distintas estrategias de implementación con el fin de conocer la factibilidad de crear dispositivos portátiles y de amplio espectro o productos específicos para un sector en particular, pero con la intención de lograr una alta precisión y funcionalidad. La investigación permitió concluir con una aportación novedosa para el desarrollo de prototipos de espectrofotometría de gran alcance para industrias o sectores específicos y de bajo costo.

Descargas

La descarga de datos todavía no está disponible.

Citas

Albert, D. R., Todt, M. A., & Davis, H. F. (2012). A low-cost quantitative absorption spectrophotometer. Journal of Chemical Education, 89(11), 1432–1435. https://doi.org/10.1021/ed200829d

Andrew, K. N., Worsfold, P. J., & Comber, M. (1995). On-line flow injection monitoring of ammonia in industrial liquid effluents. Analytica Chimica Acta, 314(1–2), 33–43. https://doi.org/10.1016/0003-2670(95)00269-6

Anzalone, G. C., Glover, A. G., & Pearce, J. M. (2013). Open-source colorimeter. Sensors (Switzerland), 13(4), 5338–5346. https://doi.org/10.3390/s130405338

Apostolidis, A., Klimant, I., Andrzejewski, D., & Wolfbeis, O. S. (2004). A combinatorial approach for development of materials for optical sensing of gases. Journal of Combinatorial Chemistry, 6(3), 325–331. http://www.ncbi.nlm.nih.gov/pubmed/15132591

Asher, S. A., Ludwig, M., & Johnson, C. R. (1986). UV Resonance Raman Excitation Profiles of the Aromatic Amino Acids. Journal of the American Chemical Society, 108(12), 3186–3197. https://doi.org/10.1021/ja00272a005

Baden, T., Chagas, A. M., Gage, G., Marzullo, T., Prieto-Godino, L. L., & Euler, T. (2015). Open Labware: 3-D Printing Your Own Lab Equipment. PLoS Biology, 13(3). https://doi.org/10.1371/journal.pbio.1002086

Barth, A. (2000). The infrared absorption of amino acid side chains. In Progress in Biophysics and Molecular Biology (Vol. 74, Issues 3–5, pp. 141–173). Pergamon. https://doi.org/10.1016/S0079-6107(00)00021-3

Benson, R. L., McKelvie, I. D., Hart, B. T., Truong, Y. B., & Hamilton, I. C. (1996). Determination of total phosphorus in waters and wastewaters by on-line UV/thermal induced digestion and flow injection analysis. Analytica Chimica Acta, 326(1–3), 29–39. https://doi.org/10.1016/0003-2670(96)00044-X

Berendzen, J., & Braunstein, D. (1990). Temperature-derivative spectroscopy: A tool for protein dynamics. Proceedings of the National Academy of Sciences of the United States of America, 87(1), 1–5. https://doi.org/10.1073/pnas.87.1.1

Biocompare. (2002). Espectrofotómetro UV / Vis de doble haz U-2000 de Hitachi. https://www.biocompare.com/Product-Reviews/41016-Hitachi-8217-s-U-2000-Double-Beam-UV-Vis-Spectrophotometer/

Bishop, M. L., Fody, E. P., & Schoeff, L. E. (2018). Clinical Chemistry: Principles, Techniques, and Correlations (J. & Bartlett (Ed.); Eighth Edi).

Blundell, N. J., Worsfold, P. J., Casey, H., & Smith, S. (1995). The design and performance of a portable, automated flow injection monitor for the in-situ analysis of nutrients in natural waters. Environment International, 21(2), 205–209. https://doi.org/10.1016/0160-4120(95)00010-0

Campbell, D. J., Miller, J. D., Bannon, S. J., & Obermaier, L. M. (2011). An exploration of the Nanoworld with LEGO bricks. Journal of Chemical Education, 88(5), 602–606. https://doi.org/10.1021/ed100673k

Caswell, D. S., & Spiro, T. G. (1987). Proline Signals in Ultraviolet Resonance Raman Spectra of Proteins: Cis—Trans Isomerism in Polyproline and Ribonuclease A. Journal of the American Chemical Society, 109(9), 2796–2800. https://doi.org/10.1021/ja00243a037

Cazes, J. (2004). Analytical instrumentation handbook, third edition. In M. Dekker (Ed.), Analytical Instrumentation Handbook, Third Edition (Third Edit). https://books.google.com.mx/books?hl=es&lr=&id=DN2zCrS6wywC&oi=fnd&pg=PP1&ots=88gKa5rNxL&sig=mKHh-yugjIvQBE4U9d9MGYjn8XE&redir_esc=y#v=onepage&q&f=false

Chaianantakul, N., Wutthi, K., Kamput, N., Pramanpol, N., Janphuang, P., Pummara, W., Phimon, K., & Phatthanakun, R. (2018). Development of mini-spectrophotometer for determination of plasma glucose. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 204, 670–676. https://doi.org/10.1016/j.saa.2018.06.107

Chng, J. J. K., & Patuwo, M. Y. (2020). Building a Raspberry Pi Spectrophotometer for Undergraduate Chemistry Classes. Journal of Chemical Education. https://doi.org/10.1021/acs.jchemed.0c00987

Clinch, J. R., Worsfold, P. J., & Casey, H. (1987). An automated spectrophotometric field monitor for water quality parameters. Determination of nitrate. Analytica Chimica Acta, 200(C), 523–531. https://doi.org/10.1016/S0003-2670(00)83797-6

Das, A. J., Wahi, A., Kothari, I., & Raskar, R. (2016). Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness. Scientific Reports, 6(1), 1–8. https://doi.org/10.1038/srep32504

David, A. R. J., McCormack, T., Morris, A. W., & Worsfold, P. J. (1998). A submersible flow injection-based sensor for the determination of total oxidised nitrogen in coastal waters. Analytica Chimica Acta, 361(1–2), 63–72. https://doi.org/10.1016/S0003-2670(98)00023-3

Ellis, P. S., Lyddy-Meaney, A. J., Worsfold, P. J., & McKelvie, I. D. (2003). Multi-reflection photometric flow cell for use in flow injection analysis of estuarine waters. Analytica Chimica Acta, 499(1–2), 81–89. https://doi.org/10.1016/S0003-2670(03)00682-2

Firstenberg-Eden, R., & Shelef, L. A. (2000). A new rapid automated method for the detection of Listeria from environmental swabs and sponges. International Journal of Food Microbiology, 56(2–3), 231–237. https://doi.org/10.1016/S0168-1605(99)00207-X

Gallegos, D., Long, K. D., Yu, H., Clark, P. P., Lin, Y., George, S., Nath, P., & Cunningham, B. T. (2013). Label-free biodetection using a smartphone. Lab on a Chip, 13(11), 2124–2132. https://doi.org/10.1039/c3lc40991k

Gardolinski, P. C. F. C., David, A. R. J., & Worsfold, P. J. (2002). Miniature flow injection analyser for laboratory, shipboard and in situ monitoring of nitrate in estuarine and coastal waters. Talanta, 58(6), 1015–1027. https://doi.org/10.1016/S0039-9140(02)00425-3

Gonzaga, F. B., & Pasquini, C. (2010). A low cost short wave near infrared spectrophotometer: Application for determination of quality parameters of diesel fuel. Analytica Chimica Acta, 670(1–2), 92–97. https://doi.org/10.1016/j.aca.2010.04.060

González-Morales, D. F., López-Santos, O., & García-Beltrán, O. (2018). Low-Cost Spectrophotometer for In-Situ Detection of Mercury in Water. Proceedings of IEEE Sensors, 2018-Octob, 1–4. https://doi.org/10.1109/ICSENS.2018.8589708

González-Morales, D., Valencia, A., Díaz-Nuñez, A., Fuentes-Estrada, M., López-Santos, O., & García-Beltrán, O. (2020a). Development of a low-cost UV-Vis spectrophotometer and its application for the detection of mercuric ions assisted by chemosensors. Sensors (Switzerland), 20(3). https://doi.org/10.3390/s20030906

González-Morales, D., Valencia, A., Díaz-Nuñez, A., Fuentes-Estrada, M., López-Santos, O., & García-Beltrán, O. (2020b). Development of a low-cost UV-Vis spectrophotometer and its application for the detection of mercuric ions assisted by chemosensors. Sensors (Switzerland), 20(3). https://doi.org/10.3390/s20030906

Grinter, H. C., & Threlfall, T. L. (1992). UV-VIS Spectroscopy and Its Applications (H.-H. Perkampus (Ed.); First Edit).

HETPRO. (2021). TEMT6000 Sensor luz ambiental - HETPRO/TUTORIALES. https://hetpro-store.com/TUTORIALES/sensor-luz-ambiental-temt6000/

Higgins, J. A., Nasarabadi, S., Karns, J. S., Shelton, D. R., Cooper, M., Gbakima, A., & Koopman, R. P. (2003). A handheld real time thermal cycler for bacterial pathogen detection. Biosensors and Bioelectronics, 18(9), 1115–1123. https://doi.org/10.1016/S0956-5663(02)00252-X

Ho, C. K., Robinson, A., Miller, D. R., & Davis, M. J. (2005). Overview of sensors and needs for environmental monitoring. In Sensors (Vol. 5, Issues 1–2, pp. 4–37). MDPI AG. https://doi.org/10.3390/s5010004

Hodgkinson, J., Shan, Q., & Pride, R. D. (2006). Detection of a simulated gas leak in a wind tunnel. Measurement Science and Technology, 17(6), 1586–1593. https://doi.org/10.1088/0957-0233/17/6/041

Hosker, B. S. (2018). Demonstrating Principles of Spectrophotometry by Constructing a Simple, Low-Cost, Functional Spectrophotometer Utilizing the Light Sensor on a Smartphone. Journal of Chemical Education, 95(1), 178–181. https://doi.org/10.1021/acs.jchemed.7b00548

Ichikawa, T., Horiuchi, M., Ichiba, H., & Matsumoto, N. (1990). Trial production and application of an optical system for measuring the movements of organs composed of soft tissue. The Journal of Prosthetic Dentistry, 64(2), 227–231. https://doi.org/10.1016/0022-3913(90)90183-D

Illustrationprize. (2021). Diferencia entre fotodiodo y fototransistor. https://illustrationprize.com/es/59-difference-between-photodiode-amp-phototransistor.html

Jhilmer, A. M., Iris, A. Q., Isabel, F. Z. S., Camila, S. F., & Viviana, V. A. (2019). Informe 5 Espectrofotometria UV/Visible. https://es.scribd.com/document/459515028/INFORME-5-UV-FINAAL-pdf

Kawamura, K., Vestergaard, M., Ishiyama, M., Nagatani, N., Hashiba, T., & Tamiya, E. (2006). Development of a novel hand-held toluene gas sensor: Possible use in the prevention and control of sick building syndrome. Measurement: Journal of the International Measurement Confederation, 39(6), 490–496. https://doi.org/10.1016/j.measurement.2005.12.014

Kovarik, M. L., Clapis, J. R., & Romano-Pringle, K. A. (2020). Review of Student-Built Spectroscopy Instrumentation Projects. In Journal of Chemical Education (Vol. 97, Issue 8, pp. 2185–2195). American Chemical Society. https://doi.org/10.1021/acs.jchemed.0c00404

Kuo, J. S., Kuyper, C. L., Allen, P. B., Fiorini, G. S., & Chiu, D. T. (2004). High-power blue/UV light-emitting diodes as excitation sources for sensitive detection. Electrophoresis, 25(21–22), 3796–3804. https://doi.org/10.1002/elps.200406118

Kvittingen, E. V., Kvittingen, L., Sjursnes, B. J., & Verley, R. (2016). Simple and Inexpensive UV-Photometer Using LEDs as Both Light Source and Detector. Journal of Chemical Education, 93(10), 1814–1817.

https://doi.org/10.1021/acs.jchemed.6b00156

L.C. Passos, M., & M.F.S. Saraiva, M. L. (2019). Detection in UV-visible spectrophotometry: Detectors, detection systems, and detection strategies. In Measurement: Journal of the International Measurement Confederation (Vol. 135, pp. 896–904). Elsevier B.V. https://doi.org/10.1016/j.measurement.2018.12.045

Lackner, M. (2007). Tunable diode laser absorption spectroscopy (TDLAS) in the process industries - A review. In Reviews in Chemical Engineering (Vol. 23, Issue 2, pp. 65–147). Walter de Gruyter GmbH. https://doi.org/10.1515/REVCE.2007.23.2.65

Lau, K. T., Baldwin, S., Shepherd, R. L., Dietz, P. H., Yerzunis, W. S., & Diamond, D. (2004). Novel fused-LEDs devices as optical sensors for colorimetric analysis. Talanta, 63(1), 167–173. https://doi.org/10.1016/j.talanta.2003.10.034

Lee, R. S., Aldis, D. F., Garrett, D. W., & Lai, F. S. (1982). Improved diagnostics for determination of minimum explosive concentration, ignition energy and ignition temperature of dusts. Powder Technology, 31(1), 51–62. https://doi.org/10.1016/0032-5910(82)80004-1

Lu, Q., Collins, G. E., Smith, M., & Wang, J. (2002). Sensitive capillary electrophoresis microchip determination of trinitroaromatic explosives in nonaqueous electrolyte following solid phase extraction. Analytica Chimica Acta, 469(2), 253–260. https://doi.org/10.1016/S0003-2670(02)00662-1

Lyddy-Meaney, A. J., Ellis, P. S., Worsfold, P. J., Butler, E. C. V., & McKelvie, I. D. (2002). A compact flow injection analysis system for surface mapping of phosphate in marine waters. Talanta, 58(6), 1043–1053. https://doi.org/10.1016/S0039-9140(02)00428-9

Macka, M., Piasecki, T., & Dasgupta, P. K. (2014). Light-emitting diodes for analytical chemistry. In Annual Review of Analytical Chemistry (Vol. 7, pp. 183–207). Annual Reviews Inc. https://doi.org/10.1146/annurev-anchem-071213-020059

Maia Chagas, A. (2018). Haves and have nots must find a better way: The case for open scientific hardware. PLoS Biology, 16(9), e3000014. https://doi.org/10.1371/journal.pbio.3000014

Marle, L., & Greenway, G. M. (2005). Microfluidic devices for environmental monitoring. TrAC - Trends in Analytical Chemistry, 24(9), 795–802. https://doi.org/10.1016/j.trac.2005.08.003

Mercado Libre. (2020). Gy-8511 Ml8511 Sensor De Luz Uv Ultravioleta. https://articulo.mercadolibre.com.mx/MLM-779823956-gy-8511-ml8511-sensor-de-luz-uv-ultravioleta-_JM#position=1&type=item&tracking_id=abb9aa01-dd9e-4ae8-b78d-2e097ec5bf04

Mitrani, A. A., Gonzalez, M. L., O’Connell, M. T., Guerra, J., Harwood, R. B., & Gardner, L. B. (1991). Detection of clinically suspected deep vein thrombosis using light reflection rheography. The American Journal of Surgery, 161(6), 646–650. https://doi.org/10.1016/0002-9610(91)91248-H

Noui, L., Hill, J., Keay, P. J., Wang, R. Y., Smith, T., Yeung, K., Habib, G., & Hoare, M. (2002). Development of a high resolution UV spectrophotometer for at-line monitoring of bioprocesses. Chemical Engineering and Processing, 41(2), 107–114. https://doi.org/10.1016/S0255-2701(01)00122-2

O’Toole, M., & Diamond, D. (2008). Absorbance based light emitting diode optical sensors and sensing devices. In Sensors (Vol. 8, Issue 4, pp. 2453–2479). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/s8042453

O’Toole, M., Lau, K. T., Shepherd, R., Slater, C., & Diamond, D. (2007). Determination of phosphate using a highly sensitive paired emitter-detector diode photometric flow detector. Analytica Chimica Acta, 597(2), 290–294. https://doi.org/10.1016/j.aca.2007.06.048

Pacquit, A., Frisby, J., Diamond, D., Lau, K. T., Farrell, A., Quilty, B., & Diamond, D. (2007). Development of a smart packaging for the monitoring of fish spoilage. Food Chemistry, 102(2), 466–470. https://doi.org/10.1016/j.foodchem.2006.05.052

Pacquit, A., Lau, K. T., McLaughlin, H., Frisby, J., Quilty, B., & Diamond, D. (2006). Development of a volatile amine sensor for the monitoring of fish spoilage. Talanta, 69(2 SPEC. ISS.), 515–520. https://doi.org/10.1016/j.talanta.2005.10.046

Pamula, V. K., Srinivasan, V., Chakrapani, H., Fair, R. B., & Toone, E. J. (2005). A droplet-based lab-on-a-chip for colorimetric detection of nitroaromatic explosives. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 722–725. https://doi.org/10.1109/MEMSYS.2005.1454031

Pereira, V. R., & Hosker, B. S. (2019). Low-cost (<€5), open-source, potential alternative to commercial spectrophotometers. PLoS Biology, 17(6). https://doi.org/10.1371/journal.pbio.3000321

Place, B. J. (2019). Activity Analysis of Iron in Water Using a Simple LED Spectrophotometer. Journal of Chemical Education, 96(4), 714–719. https://doi.org/10.1021/acs.jchemed.8b00515

PROLAB (Proveedor de Laboratorios S.A. de C.V.). (2021). Espectrofotometro de doble haz Uv-Vis Metash.

Roithner Laser Technik GmbH. (2020). Roithner Lasertechnik.

Rossi, E. M., Elías, Ó. B., & López, A. A. (2013). Espectrómetro para radiación visible hecho en casa, de bajo costo y altas prestaciones. Revista de La Sociedad Química Del Perú, 79. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1810-634X2013000100011

Sarkar, B. (1999). Metals and Genetics (K. Academic (Ed.); First Edit).

Schubert, E. F., & Kim, J. K. (2005). Solid-state light sources getting smart. In Science (Vol. 308, Issue 5726, pp. 1274–1278). https://doi.org/10.1126/science.1108712

SCiO Product. (2020). SCiO - Explore More with the World’s First Pocket Sized Molecular Sensor. https://www.consumerphysics.com/scio-for-consumers/

Sequeira, M., Diamond, D., Daridon, A., Lichtenberg, J., Verpoorte, S., & De Rooij, N. F. (2002). Progress in the realisation of an autonomous environmental monitoring device for ammonia. TrAC - Trends in Analytical Chemistry, 21(12), 816–827. https://doi.org/10.1016/S0165-9936(02)01205-0

Smiddy, M., Papkovskaia, N., Papkovsky, D. B., & Kerry, J. P. (2002). Use of oxygen sensors for the non-destructive measurement of the oxygen content in modified atmosphere and vacuum packs of cooked chicken patties; impact of oxygen content on lipid oxidation. Food Research International, 35(6), 577–584. https://doi.org/10.1016/S0963-9969(01)00160-0

Sölvason, G. Ó., & Foley, J. T. (2015). Low-cost Spectrometer for Icelandic Chemistry Education. Procedia CIRP, 34, 156–161. https://doi.org/10.1016/j.procir.2015.07.072

Taniyasu, Y., Kasu, M., & Makimoto, T. (2006). An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature, 441(7091), 325–328. https://doi.org/10.1038/nature04760

Teshima, N., Li, J., Toda, K., & Dasgupta, P. K. (2005). Determination of acetone in breath. Analytica Chimica Acta, 535(1–2), 189–199. https://doi.org/10.1016/j.aca.2004.12.018

Thomas, O., & Burgess, C. (2017). UV-Visible Spectrophotometry of Water and Wastewater. In ELSEVIER (Ed.), UV-Visible Spectrophotometry of Water and Wastewater (Second Edi). John Fedor.

Trojanowicz, M., Worsfold, P. J., & Clinch, J. R. (1988). Solid-state photometric detectors for flow injection analysis. In Trends in Analytical Chemistry (Vol. 7, Issue 8, pp. 301–305). Elsevier. https://doi.org/10.1016/0165-9936(88)80010-4

Tzanavaras, P. D., & Themelis, D. G. (2007). Review of recent applications of flow injection spectrophotometry to pharmaceutical analysis. In Analytica Chimica Acta (Vol. 588, Issue 1, pp. 1–9). Elsevier. https://doi.org/10.1016/j.aca.2007.01.060

Varra, T., Simpson, A., Roesler, B., Nilsson, Z., Ryan, D., Van Erdewyk, M., Schuttlefield Christus, J. D., & Sambur, J. B. (2020). A Homemade Smart Phone Microscope for Single-Particle Fluorescence Microscopy. Journal of Chemical Education, 97(2), 471–478. https://doi.org/10.1021/acs.jchemed.9b00670

Vasco Ribeiro Pereira. (2019). Teléfono-espectrofotómetro: elementos del proyecto de hardware de código abierto. https://github.com/VascoRibeiroPereira/phone-spectrophotometer

Vernon, L. P. (1960). Spectrophotometry Determination of Chlorophylls and Pheophytins in Plant Extracts. Analytical Chemistry, 32(9), 1144–1150. https://doi.org/10.1021/ac60165a029

W, H. (1973). Light Emitting Diodes (I. Mims, F. M. (Ed.)). https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=Mims%2C+F.+M.%2C+III.+Light+Emitting+Diodes%3B+Howard+W.+Sams+%26+Co.%3A+New+York%2C+1973&btnG=

Worsfold, P. J., Richard Clinch, J., & Casey, H. (1987). Spectrophotometric field monitor for water quality parameters. The Determination of Phosphate. Analytica Chimica Acta, 197(C), 43–50. https://doi.org/10.1016/S0003-2670(00)84711-X

Worsfold, P., Poole, C., Townshend, A., & Miro, M. (2019). Encyclopedia of Analytical Science.

Publicado
2021-12-12
Cómo citar
Avila-Camacho, F. J., Moreno-Villalba, L. M., Cerón-Montes, G. I., Garrido-Hernández, A., Cardoso-Chávez, C. A., & Pacheco-Piña, C. J. (2021). Diseño de un espectrofotómetro UV-VIS de bajo costo para la industria bioquímica: Una Revisión. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 9(Especial2), 19-28. https://doi.org/10.29057/icbi.v9iEspecial2.7788

Artículos más leídos del mismo autor/a