Estudio sobre los parámetros de impresión para mejorar la inyección por goteo-sobre-demanda

Palabras clave: Impresión por inyección de tinta, Goteo-sobre-demanda, Imprimibilidad, ZnO impreso, Al:ZnO impreso, Patrones impresos uniformes

Resumen

Este estudio propone la optimización de las condiciones y parámetros de impresión por inyección piezoeléctrica de tintas basadas en óxido de zinc (ZnO) y óxido de zinc dopado con aluminio (Al:ZnO). Se imprimieron patrones con distinta resolución bajo condiciones y parámetros de eyección continua de tintas comerciales que poseen propiedades reológicas específicas para esta técnica. Estas tintas consisten en ZnO o Al:ZnO en forma de nanopartículas, las cuales están dispersadas en una combinación de alcoholes. Los patrones impresos son caracterizados mediante las técnicas de microscopia de fuerza atómica, elipsometría y microscopía óptica para determinar la variación en su morfología, espesor y uniformidad, respectivamente. Los resultados obtenidos dependen de la resolución y son la evidencia para determinar las condiciones y parámetros óptimos que permitan el traslape entre patrones impresos de otros materiales, de tal forma que se considere su uso en la fabricación de dispositivos semiconductores totalmente impresos.

Descargas

La descarga de datos todavía no está disponible.

Citas

Arrabito, G., et al., (2020). Printing ZnO Inks: From Principles to Devices. Crystals 10, 449, 1–34. DOI: 10.3390/cryst10060449

Carlos, E., et al., (2021). Design and synthesis of low temperature printed metal oxide memristors. Journal of Materials Chemistry C 9, 11, 3911–3918. DOI: 10.1039/D0TC05368F

Chang, S.J., et al., (2003). Highly reliable nitride-based LEDs with SPS+ITO upper contacts. IEEE Journal of Quantum Electronics 39, 11, 1439–1443. DOI: 10.1109/JQE.2003.818312

Chu, Y., et al., (2019). Printed Diodes: Materials Processing, Fabrication, and Applications. Advanced Science 6, 1–29. DOI: 10.1002/advs.201801653

Chung, J.H., et al., (2008). Effect of thickness of ZnO active layer on ZnO-TFT's characteristics. Thin Solid Films 516, 16, 5597–5601. DOI: 10.1016/j.tsf.2007.07.107

Derby, B., Reis, N., (2003). Inkjet Printing of Highly Loaded Particulate Suspensions. MRS Bulletin: Inkjet Printing of Functional Materials 28, 11, 815–818. DOI: 10.1557/mrs2003.230

Dong, H. M., et al., (2006). An experimental study of drop-on-demand drop formation. Physics of Fluids 18, 1–16. DOI: 10.1063/1.2217929

Dressaire, E., Sauret, A., (2017). Clogging of microfluidic systems. Soft Matter 13, 1, 37–48. DOI: 10.1039/C6SM01879C

Du, Z., et al., (2018). Inkjet printing of viscoelastic polymer inks. Chinese Chemical Letters 29, 3, 399–404. DOI: 10.1016/j.cclet.2017.09.031

Fromm, J. E., (1984). Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM Journal of Research and Development 28, 3, 322–333. DOI: 10.1147/rd.283.0322

Fujifilm Dimatix, Inc., (2016). Dimatix Materials Printer DMP-2850 Use Manual.

Gordon, R. G., (2020). Criteria for Choosing Transparent Conductors. MRS Bulletin: Transparent Conducting Oxides 25, 8, 52–57. DOI: 10.1557/mrs2000.151

Gutierrez, G., et al., (2013). Fully patterned and low temperature transparent ZnO-based inverters. Thin Solid Films 545, 31, 548–461. DOI: 10.1016/j.tsf.2013.07.069

Hashemi, S. A., et al., (2020). Recent Progress in Flexible-Wearable Solar Cells for Self-Powered Electronic Devices. Energy & Environmental Sci-ence 13, 3, 685–743. DOI: 10.1039/C9EE03046H

Kandpal, K., Gupta N., (2016). Zinc Oxide Thin Films Transistors: Advances, Challenges and Future Trends. Bulletin of EEI 5, 2, 205–212. DOI: 10.11591/eei.v5i2.634

Kern, W., (1993). Handbook of semiconductor wafer cleaning technology. Noyes Publication, Ney Jersey, USA.

Kim, G. H., et al., (2009). Formation Mechanism of Solution-Processed Nanocrystalline InGaZnO Thin Film as Active Channel Layer in Thin-Film Transistor. Journal of The Electrochemical Society 156, 1, H7–H9. DOI: 10.1149/1.2976027

Krainer, S., et al., (2020). Predicting inkjet dot spreading and print through from liquid penetration- and picoliter contact angle measurement. Nordic Pulp & Paper Research Journal 35, 1, 124–136. DOI: 10.1515/npprj-2019-0088

Lee, A., et al., (2012). Optimization of Experimental Parameters to Suppress Nozzle Clogging in Inkjet Printing. Industrial & Engineering Chemistry Research 51, 40, 13195–13204. DOI: 10.1021/ie301403g

Li, Y., et al., (2017). All Inkjet-Printed Metal-Oxide Thin-Film Transistor Array with Good Stability and Uniformity Using Surface-Energy Patterns. ACS Applied Material Interfaces 9, 8194–8200. DOI: 10.1021/acsami.7b00435

Li, Y., et al., (2019). Deposited Nanoparticles Can Promote Air Clogging of Piezoelectric Inkjet Printhead Nozzles. Langmuir 35, 16, 5517–5524. DOI: 10.1021/acs.langmuir.8b04335

Lim, S. C., et al., (2014). Device characteristics of inkjet-printed ZnO TFTs by solution process. Japanese Journal of Applied Physics 53, 05HB10, 1–5. DOI: 10.7567/JJAP.53.05HB10

Lin, X., et al., (2015). Inkjet-Printed Cu2ZnSn(S, Se)4 Solar Cells. Advanced Science 2, 6, 1–6. DOI: 10.1002/advs.201500028

Liu, Y., Derby, B., (2019). Experimental study of the parameters for stable drop-on-demand inkjet performance. Physics of Fluids 31, 3, 1–11. DOI: 10.1063/1.5085868

Mampallil, D., Eral, H. B., (2018). A review on suppression and utilization on the coffee-ring effect. Advances in Colloid and Interface Science 252, 38–54. DOI: 10.1016/j.cis.2017.12.008

Martin, G. D., et al., (2008). Inkjet printing-the physics of manipulating liquid jets and drops. Journal of Physics: Conference Series 105, 1–14. DOI: 10.1088/1742-6596/105/1/012001

Matavž, A., Malič, B., (2018). Inkjet printing of functional oxide nanostruc-tures from solution-based inks. Journal of Sol-Gel Science and Technolo-gy 87, 1–21. DOI: 10.1007/s10971-018-4701-3

Nahlik, J., et al., (2019). A High Sensitivity UV Photodetector With Inkjet Printed ZnO/Nanodiamond Active Layers. IEEE Sensors Journal 19, 14, 5587–5593. DOI: 10.1109/JSEN.2019.2893572

Ning, H., et al., (2017). Direct Inkjet Printing of Silver Source/Drain Elec-trodes on an Amorphous InGaZnO Layer for Thin-Film Transistors. Ma-terials 10, 51, 1–7. DOI: 10.3390/ma10010051

Notz, P. K., Basaran, O. A., (2004). Dynamics and breakup of a contracting liquid filament. Journal of Fluid Mechanics 512, 223–256. DOI: 10.1017/S0022112004009759

Park, J. W., et al., (2019). A Review of Low-Temperature Solution-Processed Metal Oxide Thin-Film Transistors for Flexible Electronics. Advanced Functional Materials 1904632, 1–40. DOI: 10.1002/adfm.201904632

Sacramento, A., et al., (2020). Inverted Polymer Solar Cells Using Inkjet Printed ZnO as Electron Transport Layer: Characterization and Degrada-tion Study. IEEE Journal of the Electron Devices Society 8, 413–420. DOI: 10.1109/JEDS.2020.2968001

Sanchez, J. G., et al., (2018). Impact of inkjet printed ZnO electron transport layer on the characteristics of polymer solar cells. RSC Advances 8, 24, 13094–13102. DOI: 10.1039/c8ra01481g

Schiaffino, S., Sonin, A. A., (1997). Molten droplet deposition and solidifica-tion at low Weber numbers. Physics of Fluids 9, 11, 3172–3187. DOI: 10.1063/1.869434

Secor, E. B., et al., (2016). High-Performance Inkjet-Printed Indium-Gallium-Zinc-Oxide Transistors Enabled by Embedded, Chemically Stable Gra-phene Electrodes. ACS Applied Material Interfaces 8, 17428–17434. DOI: 10.1021/acsami.6b02730

Sigma-Aldrich, (2021). Aluminum-doped zinc oxide nanoparticle ink. Ficha de datos de seguridad, disponible en: https://www.sigmaaldrich.com

Sigma-Aldrich, (2021). Zinc oxide nanoparticle ink. Ficha de datos de seguri-dad, disponible en: https://www.sigmaaldrich.com

Soltman, D., Subramanian, V., (2008). Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 24, 5, 2224–2231. DOI: 10.1021/la7026847

Song, K., et al., (2010). Fully Flexible Solution-Deposited Thin-Film Transis-tors. Advanced Materials 22, 38, 4308–4312. DOI: 10.1002/adma.201002163

Sowade, E., et al., (2016). All-inkjet-printed thin-film transistors: manufac-turing process reliability by root cause analysis. Scientific Reports 6, 33490, 1–15. DOI: 10.1038/srep33490

Stelling, C., et al., (2017). Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells. Scientific Reports 7, 1, 1–13. DOI: 10.1038/srep42530

Treharne, R. E., et al., (2011). Optical design and fabrication of fully sput-tered CdTe/CdS colar cells. Journal of Physics: Conference Series 286, 1–8. DOI: 10.1088/1742-6596/286/1/012038

Vernieuwe, K., et al., (2017). Thermal processing of aqueous AZO inks towards functional TCO thin films. Journal os Alloys and Compounds 690, 5, 360–368. DOI: 10.1016/j.jallcom.2016.08.120

Wang, N.-F., et al., (2013). Effect of surface texture on Al–Y codoped ZnO/n-Si heterojunction solar cells. IEEE Transactions on Electron Devi-ces 60, 12, 4073–4078. DOI: 10.1109/TED.2013.2287060

Publicado
2021-12-12
Cómo citar
Garduño, S. I., Fajardo Cornejo, J., Rodríguez-Lugo, V., & Estrada del Cueto, M. (2021). Estudio sobre los parámetros de impresión para mejorar la inyección por goteo-sobre-demanda. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 9(Especial2), 72-81. https://doi.org/10.29057/icbi.v9iEspecial2.7919

Artículos más leídos del mismo autor/a

1 2 3 > >>