Germinación: un método de bioproceso que incrementa la calidad nutricional,biológica y funcional de harinas de leguminosas
Resumen
La germinación de semillas de leguminosas es una técnica eficaz, rápida y económica que permite mejorar la calidad nutricional de las harinas obtenidas a partir de las mismas, se ha demostrado un aumento en la concentración de nutrientes, como proteínas, fibra y vitaminas. También se ha evidenciado una disminución de compuestos anti nutricionales como ácido fítico, lectinas, saponinas, alcaloides entre otros. Además, se ha reportado una mejora en la funcionalidad biológica, debido a la generación de péptidos de bajo peso molecular, con efecto antioxidante, antiinflatorio, antidiabético, antiadipogénico, antimicrobiano e incluso anticancerígeno. De la misma forma se mejoran propiedades tecnofuncionales de las harinas (absorción de agua y aceite, propiedades de emulsificación y formación de espuma, densidad aparente etc.) lo que las convierte en un ingrediente de interés para la industria alimentaria, potencializando su aplicación en el desarrollo de alimentos funcionales con beneficios a la salud humana.
Descargas
Citas
Aguilera, Y., Díaz, M. F., Jiménez, T., Benítez, V., Herrera, T., Cuadrado, C., Martín-Pedrosa, M., & Martín-Cabrejas, M. A. (2013). Changes in Nonnutritional Factors and Antioxidant Activity during Germination of Nonconventional Legumes. Journal of Agricultural and Food Chemistry, 61(34), 8120–8125. https://doi.org/10.1021/jf4022652
Benítez, V., Cantera, S., Aguilera, Y., Mollá, E., Esteban, R. M., Díaz, M. F., & Martín-Cabrejas, M. A. (2013). Impact of germination on starch, dietary fiber and physicochemical properties in non-conventional legumes. Food Research International, 50(1), 64-69. https://doi.org/10.1016/j.foodres.2012.09.044
de Souza Rocha, T., Hernandez, L. M. R., Mojica, L., Johnson, M. H., Chang, Y. K., & de Mejia, E. G. (2015). Germination of Phaseolus vulgaris and alcalase hydrolysis of its proteins produced bioactive peptides capable of improving markers related to type-2 diabetes in vitro. Food Research International, 76, 150-159. https://doi.org/10.1016/j.foodres.2015.04.041
El-Mahdy, A. R., Moharram, Y. G., & Abou-Samaha, O. R. (1985). Influence of germination on the nutritional quality of lentil seeds. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 181(4), 318-320. https://doi.org/10.1007/BF01043094
Fouad A. A., Rehab F. M. A. (2015). Effect of germination time on proximate analysis, bioactive compounds and antioxidant activity of lentil (Lens culinaris Medik) sprouts. Acta Sci.Pol. Technol. Aliment. 14 (3), 233-246 https://doi.org/10.17306/J.AFS.2015.3.25
Frias, J., Diaz-Pollan, C., Hedley, C. L., & Vidal-Valverde, C. (1995). Evolution of trypsin inhibitor activity during germination of lentils. Journal of Agricultural and Food Chemistry, 43(8), 2231-2234. https://doi.org/10.1021/jf00056a049
Ghavidel, R. A., & Prakash, J. (2007). The impact of germination and dehulling on nutrients, antinutrients, in vitro iron and calcium bioavailability and in vitro starch and protein digestibility of some legume seeds. LWT-Food Science and Technology, 40(7), 1292-1299. 10.1016/j.lwt.2006.08.002
Ghorphade, V. M., & Kadam, S. S. (1989). Germination. In D. K. Salunke & S. S. Kadam (Eds.). CRC Handbook of World Food Legumes: Nutritional Chemistry, Processing Technology and Utilization (vol. III, pp. 165–176). Boca Rato´n, Florida: CRC Press, Inc.
González-Montoya, M., Hernández-Ledesma, B., Silván, J. M., Mora-Escobedo, R., & Martínez-Villaluenga, C. (2018). Peptides derived from in vitro gastrointestinal digestion of germinated soybean proteins inhibit human colon cancer cells proliferation and inflammation. Food chemistry, 242, 75-82. 10.1016/j.foodchem.2017.09.035
Granito, M., Guerra, M., Torres, A., & Guinand, J. (2004). Efecto del procesamiento sobre las propiedades funcionales de Vigna Sinensis. Interciencia, 29(9), 521-526.
Guardado-Félix, D., Serna-Saldivar, S. O., Cuevas-Rodríguez, E. O., Jacobo-Velázquez, D. A., & Gutiérrez-Uribe, J. A. (2017). Effect of sodium selenite on isoflavonoid contents and antioxidant capacity of chickpea (Cicer arietinum L.) sprouts. Food chemistry, 226, 69-74. 10.1016/j.foodchem.2017.01.046
Hobday, S. M., Thurman, D. A., & Barber, D. J. (1973). Proteolytic and trypsin inhibitory activities in extracts of germinating Pisum sativum seeds. Phytochemistry, 12(5), 1041-1046.https://doi.org/10.1016/0031-9422(73)85012-5
Kaur, M., Sandhu, K. S., Ahlawat, R., & Sharma, S. (2015). In vitro starch digestibility, pasting and textural properties of mung bean: effect of different processing methods. Journal of food science and technology, 52(3), 1642-1648. 10.1007/s13197-013-1136-2
Kaushal, P., Kumar, V., & Sharma, H. K. (2012). Comparative study of physicochemical, functional, antinutritional and pasting properties of taro (Colocasia esculenta), rice (Oryza sativa) flour, pigeonpea (Cajanus cajan) flour and their blends. LWT-Food Science and Technology, 48(1), 59-68. 10.1016/j.lwt.2012.02.028
Lawal, O. S. (2004). Functionality of African locust bean (Parkia biglobossa) protein isolate: effects of pH, ionic strength and various protein concentrations. Food Chemistry, 86(3), 345-355. 10.1016/j.foodchem.2003.09.036
Masood, T., Shah, H. U., & Zeb, A. (2014). Effect of sprouting time on proximate composition and ascorbic acid level of mung bean (Vigna radiate L.) and chickpea (Cicer Arietinum L.) seeds. The Journal of Animal & Plant Sciences, 24(3), 850-859.
Mbithi, S., Van Camp, J., Rodriguez, R., & Huyghebaert, A. (2001). Effects of sprouting on nutrient and antinutrient composition of kidney beans (Phaseolus vulgaris var. Rose coco). European Food Research and Technology, 212(2), 188-191. https://doi.org/10.1007/s002170000200
Megat Rusydi, M. R., Noraliza, C. W., Azrina, A., & Zulkhairi, A. (2011). Nutritional changes in germinated legumes and rice varieties. International Food Research Journal, 18(2).
Mostafa, M. M., Rahma, E. H., & Rady, A. H. (1987). Chemical and nutritional changes in soybean during germination. Food Chemistry, 23(4), 257-275. https://doi.org/10.1016/0308-8146(87)90113-0
Olalekan, A. J., & Bosede, B. F. (2010). Comparative study on chemical composition and functional properties of three Nigerian legumes (jack beans, pigeon pea and cowpea). Journal of Emerging Trends in Engineering and Applied Sciences, 1(1), 89-95.
Rangel, A., Domont, G. B., Pedrosa, C., & Ferreira, S. T. (2003). Functional properties of purified vicilins from cowpea (Vigna unguiculata) and pea (Pisum sativum) and cowpea protein isolate. Journal of agricultural and food chemistry, 51(19), 5792-5797. https://doi.org/10.1021/jf0340052
Robertson, J. A., de Monredon, F. D., Dysseler, P., Guillon, F., Amado, R., & Thibault, J. F. (2000). Hydration properties of dietary fibre and resistant starch: A European collaborative study. LWT-Food Science and Technology, 33(2), 72-79. https://doi.org/10.1006/fstl.1999.0595
Sangronis, E., & Machado, C. J. (2007). Influence of germination on the nutritional quality of Phaseolus vulgaris and Cajanus cajan. LWT-Food Science and Technology, 40(1), 116-120. https://doi.org/10.1016/j.lwt.2005.08.003
Sarmadi, B. H., & Ismail, A. (2010). Antioxidative peptides from food proteins: a review. Peptides, 31(10), 1949-1956. 10.1016/j.peptides.2010.06.020
Satyanarayana, B., Devi, P. S., & Arundathi, A. (2011). Biochemical changes during seed germination of Sterculia urens Roxb. Notulae Scientia Biologicae, 3(3), 105-108. https://doi.org/10.15835/nsb336116
Seena, S., & Sridhar, K. R. (2005). Physicochemical, functional and cooking properties of under explored legumes, Canavalia of the southwest coast of India. Food Research International, 38(7), 803-814. 10.1016/j.foodres.2005.02.007
Sibian, M. S., Saxena, D. C., & Riar, C. S. (2017). Effect of germination on chemical, functional and nutritional characteristics of wheat, brown rice and triticale: a comparative study. Journal of the Science of Food and Agriculture, 97(13), 4643-4651. 10.1002/jsfa.8336
Urbano, G., Lopez-Jurado, M., Frejnagel, S., Gómez-Villalva, E., Porres, J. M., Frias, J., et al. (2005). Nutritional assessment of raw and germinated pea (Pisum sativum L.) protein and carbohydrate by in vitro and in vivo techniques. Nutrition, 21, 230–239. 10.1016/j.nut.2004.04.025
Vernaza, M. G., Dia, V. P., de Mejia, E. G., & Chang, Y. K. (2012). Antioxidant and antiinflammatory properties of germinated and hydrolysed Brazilian soybean flours. Food chemistry, 134(4), 2217-2225. 10.1016/j.foodchem.2012.04.037
Vidal-Valverde, C., & Frias, J. (1992). Changes in carbohydrates during germination of lentils. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 194(5), 461-464. https://doi.org/10.1007/BF01197729
Vidal-Valverde, C., Frías, J., Sierra, I., Blázquez, I., Lambein, F., & Kuo, Y-. H. (2002). New functional legume foods by germination: Effect on the nutritive value of beans, lentils and peas. European Food Research and Technology, 215, 472–477. 10.1007/s00217-002-0602-2
Warle, B., Riar, C., Gaikwad, S., & Mane, V. (2015). Effect of germination on nutritional quality of soybean (Glycine Max). Red, 1(1.3). 10.9790/2402-09421215