Caracterización de ficocianina por espectrofotometría de masas
Resumen
Las características de la espectrometría de masas (EM) la han elevado a una posición destacada entre los métodos analíticos debido a su sensibilidad inigualable, límites de detección, rapidez y su combinación con la cromatografía (Milman, 2015). aplicaciones biotecnológicas de algunos complejos proteicos requieren información detallada sobre su estructura y composición, lo que puede ser difícil de obtener en el caso de las proteínas de origen natural (Kaldmäe et al., 2019). Importante ejemplo es la ficocianina (FC), aislada de microorganismos fotosintéticos. Rivera et al (2021), exponen que este metabolito genera efectos biológicos con alto poder antioxidante, antiinflamatorio, anticancerígeno e incluso ha demostrado potencial antiviral y su posible uso en trastornos relacionados con el brote de COVID-19. A pesar de su utilidad, se desconoce en gran medida estructuras e interacciones de sus subunidades centrales. Por lo que, se realizó una revisión bibliográfica del análisis por EM para revelar su estabilidad e identificar sus homólogos arquitectónicos.
Descargas
Citas
Busch, K. L. (2003). Encyclopedia of Physical Science and Technology (3rd ed.). Elsevier.
Chen, H. W., Yang, T. S., Chen, M. J., Chang, Y. C., Wang, E. I., Ho, C. L., Lai, Y. J., Yu, C. C., Chou, J. C., Ping Chao, L. K., Liao, P. C. (2014). Purification and immunomodulating activity of C-phycocyanin from Spirulina platensis cultured using power plant flue gas. Process Biochemistry, 49, 1337-1344. DOI: 10.1016/j.procbio.2014.05.006.
Ferraro, G., Imbimbo, P., Marseglia, A., Illiano, A., Fontanarosa, C., Amoresano, A., Olivieri, G., Pollio, A., Monti, D. M., Merlino, A. (2020). A thermophilic C-phycocyanin with unprecedented biophysical and biochemical properties. International Journal of Biological Macromolecules, 150, 38-51. DOI: 10.1016/j.ijbiomac.2020.02.045.
Fratelli, C., Burck, M., Amarante, M. C. A., Braga, A. R. C. (2021). Antioxidant potential of nature's “something blue”: Something new in the marriage of biological activity and extraction methods applied to C-phycocyanin. Trends in Food Science & Technology, 107, 309-323. DOI: 10.1016/j.tifs.2020.10.043.
Grover, P., Bhatnagar, A., Kumari, N., Bhatt, A. N., Nishad, D. K., Purkayastha, J. (2021). C-Phycocyanin—a novel protein from Spirulina platensis—In vivo toxicity, antioxidant and immunomodulatory studies. Saudi Journal of Biological Sciences, 28, 1853-1859. DOI: 10.1016/j.sjbs.2020.12.037.
Hoffmann, E., Stroobant, V. (2007). Mass Spectrometry: Principles and Applications (3rd ed.). Wiley, Brussels, Belgium.
Hsieh Lo, M., Castillo, G., Ochoa Becerra, M. A., Mojica, L. (2019). Phycocyanin and phycoerythrin: Strategies to improve production yield and chemical stability. Algal Research, 42, 101600. DOI: 10.1016/j.algal.2019.101600.
Ismaiel, M. M. S., El-Ayouty, Y. M., Piercey Normore, M. D. (2016). Role of pH on antioxidants production by Spirulina (Arthrospira) platensis. Brazilian Journal of Microbiology, 47, 298-304. DOI: 10.1016/j.bjm.2016.01.003.
Kaldmäe, M., Sahin, C., Saluri, M., Marklund, E. G., Landreh, M. (2019). A strategy for the identification of protein architectures directly from ion mobility mass spectrometry data reveals stabilizing subunit interactions in light harvesting complexes. Protein Science, 28, 1024-1030. DOI: 10.1002/pro.3609.
Koníčková, R., Vaňková, K., Vaňková, J., Váňová, K., Muchová, L., Subhanová, I., Zadinová, M., Zelenka, J., Dvořák, A., Kolář, M., Strnad, H., Rimpelová, S., Ruml, T., Wong, R. J., Vítek, L. (2014). Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds. Annals of Hepatology, 13, 273-283. DOI: 10.1016/S1665-2681(19)30891-9.
Milman, B. L. (2015). General principles of identification by mass spectrometry. TrAC Trends in Analytical Chemistry, 69, 24-33. DOI: 10.1016/j.trac.2014.12.009.
Minic, S. L., Stanic-Vucinic, D., Mihailovic, J., Krstic, M., Nikolic, M. R., Velickovic, T. C. (2016). Digestion by pepsin releases biologically active chromopeptides from C-phycocyanin, a blue-colored biliprotein of microalga Spirulina. Journal of Proteomics, 147, 132-139. DOI: 10.1016/j.jprot.2016.03.043.
Nair, D., Krishna, J. G., Panikkar, M. V. N., Nair, B. G., Pai, J. G., Nair, S. S. (2018). Identification, purification, biochemical and mass spectrometric characterization of novel phycobiliproteins from a marine red alga, Centroceras clavulatum. International Journal of Biological Macromolecules, 114, 679-691. DOI: 10.1016/j.ijbiomac.2018.03.153.
Patel, H. M., Rastogi, R. P., Trivedi, U., Madamwar, D. (2018). Structural characterization and antioxidant potential of phycocyanin from the cyanobacterium Geitlerinema sp. H8DM. Algal Research, 32, 372-383. DOI: 10.1016/j.algal.2018.04.024.
Prabakaran, G., Sampathkumar, P., Kavisri, M., Moovendhan, M. (2020). Extraction and characterization of phycocyanin from Spirulina platensis and evaluation of its anticancer, antidiabetic and anti-inflammatory effect. International Journal of Biological Macromolecules, 153, 256-263. DOI: 10.1016/j.ijbiomac.2020.03.009.
Raj, T. K., Ranjithkumar, R., Kanthesh, B. M., Gopenath, T. S. (2020). C-phycocyanin of Spirulina platensis inhibits NSP12 required for replication of SARS-COV-2: A novel finding in-silico. International Journal of Pharmaceutical Sciences and Research, 11, 4271-4278. DOI: 10.13040/IJPSR.0975-8232.11(9).4271-78.
Ratha, S. K., Renuka, N., Rawat, I., Bux, F. (2021). Prospective options of algae-derived nutraceuticals as supplements to combat COVID-19 and human coronavirus diseases. Nutrition, 83, 111089. DOI: 10.1016/j.nut.2020.111089.
van Bergen, W., Heck, A. J. R., Baggelaar, M. P. (2021). Recent advancements in mass spectrometry–based tools to investigate newly synthesized proteins. Current Opinion in Chemical Biology. DOI: 10.1016/j.cbpa.2021.07.001.