Síntesis de Zeolitas tipo Gismondina empleando desechos urbanos e industriales
Resumen
En este trabajo de investigación, se presenta la síntesis de zeolitas que pertenecen al grupo tipo Gismondina elaborada a partir de arena de caolín, hidróxido de sodio y lata de aluminio, empleando el método hidrotermal. Se estudia el efecto de la adición de aluminio previamente disuelto en una solución de NaOH 2M, así como la estabilidad térmica de la estructura de la zeolita obtenida. Los productos obtenidos son analizados mediante las técnicas de caracterización de difracción de rayos X y microscopía electrónica de barrido. Los resultados ponen en evidencia que el aluminio adicionado, es indispensable para sintetizar la zeolita. Se pone en evidencia que la estructura de los polvos obtenidos no es estable a 400 ºC.
Descargas
Citas
Albert, B. ., Cheetham, A. K., Stuart, J. A., & Adams, C. J. (1998). Investigations on P zeolites: synthesis, characterisation, and structure of highly crystalline low-silica NaP. Microporous and Mesoporous Materials, 1–10.
Barrer, R. M., & Munday, B. M. (1971). Cation exchange reactions of zeolite na-P. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 2909. https://doi.org/10.1039/j19710002909
Betzabé-Piña, A. (2011). Explotaciones mineras de Bauxita.
Cardoso, A. M., Paprocki, A., Ferret, L. S., Azevedo, C. M. N., & Pires, M. (2015). Synthesis of zeolite Na-P1 under mild conditions using Brazilian coal fly ash and its application in wastewater treatment. Microporous and Mesoporous Materials, 139, 59–67. https://doi.org/10.1016/j.fuel.2014.08.016
Diáz Guzmán, D. (2020). Zeolitas naturales: Composición mineralógica, análisis microestructural, composición química, estudios de adsorción y térmicos.
Espejel-Ayala, F., Solís-López, M., Schouwenaars, R., & Ramírez-Zamora, R. M. (2015). Sintesis de Zeolita P utilizando jales de cobre. Revista Mexicana de Ingeniería Química, 14. http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1232
Gao, S. S., Wang, X. L., Pei, Y. C., Meng, X. J., & Chen, N. C. (2018). P-type molecular sieve antibacterial agent and hydrothermal control. Solid State Phenomena, 281 SSP, 887–892. https://doi.org/10.4028/www.scientific.net/SSP.281.887
Hansen, S., Håkansson, U., & Fälth, L. (1989). Structure of synthetic zeolite Na-P2. Acta Crystallographica. Section C, Crystal Structure Communications, 46(6), 1361–1362. https://doi.org/10.1107/s010827018901262x
Huo, Z., Xu, X., Lü, Z., Song, J., He, M., Li, Z., Wang, Q., & Yan, L. (2012). Synthesis of zeolite NaP with controllable morphologies. Microporous and Mesoporous Materials, 158, 137–140. https://doi.org/10.1016/j.micromeso.2012.03.026
Jha, B., & Singh, D. N. (2016). Fly Ash Zeolites: Innovations, Applications, and Directions. In Advanced Structured Materials (pp. 5–31). Singapore, Singapore. https://doi.org/10.1007/978-981-10-1404-8
Król, M. (2020). Natural vs. Synthetic zeolites. Crystals, 10(7), 1–8. https://doi.org/10.3390/cryst10070622
Lutz, W., Engelhardt, G., Fichtner-Schmittler, H., Peuker, C., Löffler, E., & Siegel, H. (1985). The influence of water steam on the direct phase transformation of zeolite NaA to nepheline by thermal treatment. Crystal Research and Technology, 20(9). https://doi.org/10.1002/crat.2170200917
Ma, W., Brown, P. W., & Komarneni, S. (1998). Characterization and cation exchange properties of zeolite synthesized from fly ashes. Journal of Materials Research, 13(1), 3–7. https://doi.org/10.1557/JMR.1998.0001
Maldonado, M., Oleksiak, M. D., Chinta, S., & Rimer, J. D. (2013). Controlling crystal polymorphism in organic-free synthesis of Na-zeolites. Journal of the American Chemical Society, 135(7), 2641–2652. https://doi.org/10.1021/ja3105939
Meyer, F. (2004). Disponibilidad de reservas de bauxita. Natural Resources. Research, 13 (3), 161-172.
Mumpton, F. A. (1960). Clinoptilolite redefined. American Mineralogist, 45(3–4), 351–369.
Novembre, D., Gimeno, D., & Del Vecchio, A. (2021). Synthesis and characterization of Na-P1 (GIS) zeolite using a kaolinitic rock. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-021-84383-7
Ostrooumov, M., Cappelletti, P., & Gennaro, R. De. (2012). Applied Clay Science Mineralogical study of zeolite from New Mexican deposits (Cuitzeo area , Michoacan , Mexico ). Applied Clay Science, 55, 27–35. https://doi.org/10.1016/j.clay.2011.09.011
Pal, P., Das, J. K., Das, N., Bandyopadhyay, S., & Pal, Pameli;Das, Jugal K;Das, Nandini;Bandyopadhyay, S. (2013). Synthesis of NaP zeolite at room temperature and short crystallization time by sonochemical method. Ultrasonics Sonochemistry, 20(1), 314–321. https://doi.org/10.1016/j.ultsonch.2012.07.012
Park, M., Choi, C. L., Lim, W. T., Kim, M. C., Choi, J., & Heo, N. H. (2000a). Molten-salt method for the synthesis of zeolitic materials I. Zeolite formation in alkaline molten-salt system. Microporous and Mesoporous Materials, 37(1–2), 81–89. https://doi.org/10.1016/S1387-1811(99)00196-1
Park, M., Choi, C. L., Lim, W. T., Kim, M. C., Choi, J., & Heo, N. H. (2000b). Molten-salt method for the synthesis of zeolitic materials II. Characterization of zeolitic materials. Microporous and Mesoporous Materials, 37(1–2), 91–98. https://doi.org/10.1016/S1387-1811(99)00195-X
Rodrigues, M., Souza, A., & Santos, I. (2016). Brazilian Kaolin Wastes: Synthesis of Zeolite P at Low-Temperature. American Chemical Science Journal, 12(4), 1–11. https://doi.org/10.9734/acsj/2016/22771
Wang, P., Sun, Q., Zhang, Y., & Cao, J. (2019). Alkali-dissolving hydrothermal synthesis of zeolite P from fly ash. Micro and Nano Letters, 14(5), 572–576. https://doi.org/10.1049/mnl.2018.5650
World-Aluminium. (2018). Sustainable Bauxite Mining Guidelines. www.world-aluminium.org
Yoldi, M., Fuentes-Ordoñez, E. G., Korili, S. A., & Gil, A. (2019). Zeolite synthesis from industrial wastes. Microporous and Mesoporous Materials, 287(March), 183–191. https://doi.org/10.1016/j.micromeso.2019.06.009
Zhang, Y., Kang, W., Han, H., Wang, H., Chen, Y., Gong, X., Zhai, C., & Song, H. (2019). In-situ synthesis of NaP zeolite doped with transition metals using fly ash. Journal of the American Ceramic Society, 102(12), 7665–7677. https://doi.org/10.1111/jace.16623