Caracterización fisicoquímica mediante DRX y MEB-EDS de la zeolita comercial 13X-HP

Palabras clave: Zeolita, Faujasita, Catión, 13X

Resumen

Se adquirió la zeolita sintética comercial 13X-HP, la cual es comercializada como tamiz molecular para su aplicación en concentradores de Oxígeno. Acorde a la tabla de uso la pureza de este material es mayor al 90%, por lo que se realizó difracción de rayos X para corroborar este valor. Del mismo modo, el número “13” en el nombre es un indicativo de que el catión intercambiable presente es sodio (Na), para corroborar este resultado se realizó la caracterización por MEB-EDS para un barrido elemental de la zeolita; aprovechando la técnica se revisó la morfología de los cristales para poder correlacionarlos con los resultados de DRX y así corroborar la presencia de la estructura tipo Faujasita.

Descargas

La descarga de datos todavía no está disponible.

Citas

Asghari, M., Mosadegh, M., & Riasat Harami, H. (2018). Supported PEBA-zeolite 13X nano-composite membranes for gas separation: Preparation, characterization and molecular dynamics simulation. Chemical Engineering Science, 187, 67–78. https://doi.org/10.1016/j.ces.2018.04.067

Chen, C., Park, D. W., & Ahn, W. S. (2014). CO 2 capture using zeolite 13X prepared from bentonite. Applied Surface Science, 292, 63–67. https://doi.org/10.1016/j.apsusc.2013.11.064

Cortés, F. (2009). Adsorción de agua en materiales compuestos y en Zeolita. 116.

Garshasbi, V., Jahangiri, M., & Anbia, M. (2017). Equilibrium CO 2 adsorption on zeolite 13X prepared from natural clays. Applied Surface Science, 393, 225–233. https://doi.org/10.1016/j.apsusc.2016.09.161

IZA. (2020). Database of Zeolite Structures (IZA-SC). http://www.iza-structure.org/databases/

Jovi, N. (2011). Electrocatalytic behavior of nickel impregnated zeolite electrode. 6. https://doi.org/10.1016/j.ijhydene.2011.07.097

Lakhera, S. K., Sree, H. A., & Suman, S. (2015). Synthesis and characterization of 13x zeolite/ activated carbon composite. International Journal of ChemTech Research, 7(3), 1364–1368.

Ma, Y., Yan, C., Alshameri, A., Qiu, X., Zhou, C., & Li, D. (2014). Synthesis and characterization of 13X zeolite from low-grade natural kaolin. Advanced Powder Technology, 25(2), 495–499. https://doi.org/10.1016/j.apt.2013.08.002

Majid, Z., AbdulRazak, A. A., & Noori, W. A. H. (2019). Modification of Zeolite by Magnetic Nanoparticles for Organic Dye Removal. Arabian Journal for Science and Engineering, 44(6), 5457–5474. https://doi.org/10.1007/s13369-019-03788-9

Margeta, K., & Farkaš, A. (2019). Zeolites - New Challenges. In Zeolites - New Challenges. https://doi.org/10.5772/intechopen.77482

McCusker, L. B., Olson, D. H., & Baerlocher, C. (2007). Atlas of Zeolite Framework Types. In Atlas of Zeolite Framework Types. https://doi.org/10.1016/B978-0-444-53064-6.X5186-X

Mondragon, F., Rincon, F., Sierra, L., Escobar, J., Ramirez, J., & Fernandez, J. (1990). New perspectives for coal ash utilization: synthesis of zeolitic materials. Fuel, 69(2), 263–266. https://doi.org/10.1016/0016-2361(90)90187-U

Storch, G., Reichenauer, G., Scheffler, F., & Hauer, A. (2008). Hydrothermal stability of pelletized zeolite 13X for energy storage applications. Adsorption, 14(2–3), 275–281. https://doi.org/10.1007/s10450-007-9092-7

Undy, C. S. C. (1998). MICROWAVE TECHNIQUES IN THE SYNTHESIS AND MODIFICATION OF ZEOLITE CATALYSTS. 63, 1699–1723.

Wajima, T., & Ikegami, Y. (2009). Synthesis of crystalline zeolite-13X from waste porcelain using alkali fusion. Ceramics International, 35(7), 2983–2986. https://doi.org/10.1016/j.ceramint.2009.03.014

Wei, L., Haije, W., Kumar, N., Peltonen, J., Peurla, M., Grenman, H., & Jong, W. De. (2020). In fl uence of nickel precursors on the properties and performance of Ni impregnated zeolite 5A and 13X catalysts in CO 2 methanation. Catalysis Today, May, 0–1. https://doi.org/10.1016/j.cattod.2020.05.025

Wei, L., Kumar, N., Haije, W., Peltonen, J., Peurla, M., Grénman, H., & Jong, W. De. (2020). Can bi-functional nickel modi fi ed 13X and 5A zeolite catalysts for CO 2 methanation be improved by introducing ruthenium ? Molecular Catalysis, 494(July), 111115. https://doi.org/10.1016/j.mcat.2020.111115

Yang, R. T. (2003). Zeolites and Molecular Sieves. In Adsorbents: Fundamentals and Applications (Vol. 1862, pp. 157–190). https://doi.org/10.1002/047144409x.ch7

Zhu, L., Lv, X., Tong, S., Zhang, T., Song, Y., & Wang, Y. (2019). Modification of zeolite by metal and adsorption desulfurization of organic sulfide in natural gas. Journal of Natural Gas Science and Engineering, 69(February), 102941. https://doi.org/10.1016/j.jngse.2019.102941

Publicado
2021-12-12
Cómo citar
Morales-García, P., Cardoso-Legorreta, E., Samaniego-Benítez, J. E., Legorreta-García, F., & Perez-Labra, M. (2021). Caracterización fisicoquímica mediante DRX y MEB-EDS de la zeolita comercial 13X-HP. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 9(Especial2), 57-61. https://doi.org/10.29057/icbi.v9iEspecial2.8026
Tipo de manuscrito
Artículos de investigación

Artículos más leídos del mismo autor/a

1 2 > >>