Compuestos bioactivos presentes en alimentos con actividad antihipertensiva y su efecto en COVID-19
Resumen
Los alimentos de origen natural presentan compuestos bioactivos que pueden disminuir la incidencia de enfermedades crónicas, como la hipertensión. La presión arterial alta es una de las enfermedades cardiovasculares con mayor prevalencia, la cual está regulada por el Sistema Renina Angiotensina Aldosterona. La enzima convertidora de angiotensina 2 participa en la modulación de la presión arterial, la homeostasis de la presión arterial y es el principal receptor del virus SARS-CoV-2. Entre los compuestos más estudiados se encuentran los péptidos bioactivos y los compuestos fenólicos. Los péptidos inferiores de 1 kDa y la presencia de aminoácidos hidrofóbicos son los mejores candidatos para inhibir la enzima convertidora de angiotensina (ECA). Los compuestos fenólicos como los ácidos fenólicos y flavonoides son capaces de inhibir la ECA al reducir el estrés oxidativo implicado en la patogenia de la hipertensión. Este trabajo presenta una síntesis crítica sobre el efecto de los compuestos bioactivos en la ECA, la hipertensión y su relación con el COVID-19.
Descargas
Citas
Agarwal, G., & Gabrani, R. (2020). Antiviral Peptides: Identification and Validation. International Journal of Peptide Research and Therapeutics, 1–20. https://doi.org/10.1007/s10989-020-10072-0
Baksi, A. J., Treibel, T. A., Davies, J. E., Hadjiloizou, N., Foale, R. A., Parker, K. H., Francis, D. P., Mayet, J., & Hughes, A. D. (2009). A meta-analysis of the mechanism of blood pressure change with aging. Journal of the American College of Cardiology, 54(22), 2087–2092. https://doi.org/10.1016/j.jacc.2009.06.049
Bartłomiej, S., Justyna, R.-K., & Ewa, N. (2012). Bioactive compounds in cereal grains – occurrence, structure, technological significance and nutritional benefits – a review. Food Science and Technology International, 18(6), 559–568. https://doi.org/10.1177/1082013211433079
Bavishi, C., Maddox, T. M., & Messerli, F. H. (2020). Coronavirus Disease 2019 (COVID-19) Infection and Renin Angiotensin System Blockers. JAMA Cardiology, 5(7), 745–747. https://doi.org/10.1001/jamacardio.2020.1282
Bhullar, K. S., Drews, S. J., & Wu, J. (2021). Translating bioactive peptides for COVID-19 therapy. European Journal of Pharmacology, 890, 173661. https://doi.org/https://doi.org/10.1016/j.ejphar.2020.173661
Brglez Mojzer, E., Knez Hrnčič, M., Škerget, M., Knez, Ž., & Bren, U. (2016). Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. In Molecules (Vol. 21, Issue 7). https://doi.org/10.3390/molecules21070901
Chacko, S. M., Thambi, P. T., Kuttan, R., & Nishigaki, I. (2010). Beneficial effects of green tea: a literature review. Chinese Medicine, 5, 13. https://doi.org/10.1186/1749-8546-5-13
Chai, T.-T., Law, Y.-C., Wong, F.-C., & Kim, S.-K. (2017). Enzyme-Assisted Discovery of Antioxidant Peptides from Edible Marine Invertebrates: A Review. Marine Drugs, 15(2). https://doi.org/10.3390/md15020042
Chalamaiah M, Hemalatha R, Jyothirmayi T, Diwan P V, Kumar P U, Nimgulkar C, Kumar B D. (2014). Immunomodulatory effects of protein hydrolysates from rohu (Labeo rohita) egg (roe) in BALB/c mice. Food Research International, 62, 1054–1061.
Chen, M.-F., Gong, F., Zhang, Y. Y., Li, C., Zhou, C., Hong, P., Sun, S., & Qian, Z.-J. (2019). Preventive Effect of YGDEY from Tilapia Fish Skin Gelatin Hydrolysates against Alcohol-Induced Damage in HepG2 Cells through ROS-Mediated Signaling Pathways. In Nutrients (Vol. 11, Issue 2). https://doi.org/10.3390/nu11020392
Chowdhury, P., Sahuc, M.-E., Rouillé, Y., Rivière, C., Bonneau, N., Vandeputte, A., … Séron, K. (2018). Theaflavins, polyphenols of black tea, inhibit entry of hepatitis C virus in cell culture. PloS One, 13(11), e0198226. https://doi.org/10.1371/journal.pone.0198226
Costamagna, M. S., Zampini, I. C., Alberto, M. R., Cuello, S., Torres, S., Pérez, J., Quispe, C., Schmeda-Hirschmann, G., & Isla, M. I. (2016). Polyphenols rich fraction from Geoffroea decorticans fruits flour affects key enzymes involved in metabolic syndrome, oxidative stress and inflammatory process. Food Chemistry, 190, 392–402. https://doi.org/https://doi.org/10.1016/j.foodchem.2015.05.068
Devaux, C. A., Rolain, J.-M., & Raoult, D. (2020). ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. Journal of Microbiology, Immunology and Infection, 53(3), 425–435. https://doi.org/https://doi.org/10.1016/j.jmii.2020.04.015
Duarte, J., Pérez-Palencia, R., Vargas, F., Ocete, M. A., Pérez-Vizcaino, F., Zarzuelo, A., & Tamargo, J. (2001). Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats. British Journal of Pharmacology, 133(1), 117–124. https://doi.org/10.1038/sj.bjp.0704064
Dykes, L., & Rooney, L. W. (2006). Sorghum and millet phenols and antioxidants. Journal of Cereal Science, 44(3), 236–251. https://doi.org/https://doi.org/10.1016/j.jcs.2006.06.007
Esfandi, R., Walters, M. E., & Tsopmo, A. (2019). Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon, 5(4), e01538. https://doi.org/https://doi.org/10.1016/j.heliyon.2019.e01538
Furuhashi, M., Moniwa, N., Mita, T., Fuseya, T., Ishimura, S., Ohno, K., … Miura, T. (2015). Urinary Angiotensin-Converting Enzyme 2 in Hypertensive Patients May Be Increased by Olmesartan, an Angiotensin II Receptor Blocker. American Journal of Hypertension, 28(1), 15–21. https://doi.org/10.1093/ajh/hpu086
Gangopadhyay, N., Wynne, K., Connor, P. O., Gallagher, E., Brunton, N. P., Rai, D. K., & Hayes, M. (2016). In silico and in vitro analyses of the angiotensin-I converting enzyme inhibitory activity of hydrolysates generated from crude barley ( Hordeum vulgare ) protein concentrates. Food Chemistry, 203, 367–374. https://doi.org/10.1016/j.foodchem.2016.02.097
Ganguly, A., Sharma, K., & Majumder, K. (2019). Chapter Four - Food-derived bioactive peptides and their role in ameliorating hypertension and associated cardiovascular diseases (F. B. T.-A. in F. and N. R. Toldrá (ed.); Vol. 89, pp. 165–207). Academic Press. https://doi.org/https://doi.org/10.1016/bs.afnr.2019.04.001
Gani, A., SM, W., & FA, M. (2012). Whole-Grain Cereal Bioactive Compounds and Their Health Benefits: A Review. Journal of Food Processing & Technology, 03(03). https://doi.org/10.4172/2157-7110.1000146
Gaskins A.J., Mumford S.L., Rovner A.J., Zhang C., Chen L., Wactawski-Wende J., Perkins N.J., Schisterman E.F., BioCycle Study G. (2010). Whole grains are associated with serum concentrations of high sensitivity C-reactive protein among premenopausal women. Journal Nutrition, 140, 1669–1676. doi: 10.3945/jn.110.124164
Giacometti Cavalheiro, F., Parra Baptista, D., Domingues Galli, B., Negrão, F., Nogueira Eberlin, M., & Lúcia Gigante, M. (2020). High protein yogurt with addition of Lactobacillus helveticus: Peptide profile and angiotensin-converting enzyme ACE-inhibitory activity. Food Chemistry, 333, 127482. https://doi.org/https://doi.org/10.1016/j.foodchem.2020.127482
Gogebakan O., Kohl A., Osterhoff M.A., van Baak M.A., Jebb S.A., Papadaki A., Martinez J.A., Handjieva-Darlenska T., Hlavaty P., Weickert M.O., et al. (2011). Effects of weight loss and long-term weight maintenance with diets varying in protein and glycemic index on cardiovascular risk factors: The diet, obesity, and genes (DiOGenes) study: A randomized, controlled trial. Circulation, 124:2829–2838. doi: 10.1161/CIRCULATIONAHA.111.033274
Goletzke J., Buyken A.E., Joslowski G., Bolzenius K., Remer T., Carstensen M., Egert S., Nothlings U., Rathmann W., Roden M., et al. (2014). Increased intake of carbohydrates from sources with a higher glycemic index and lower consumption of whole grains during puberty are prospectively associated with higher IL-6 concentrations in younger adulthood among healthy individuals. Journal Nutrition, 144, 1586–1593. doi: 10.3945/jn.114.193391
Gu, Y., Liang, Y., Bai, J., Wu, W., Lin, Q., & Wu, J. (2019). Spent hen-derived ACE inhibitory peptide IWHHT shows antioxidative and anti-inflammatory activities in endothelial cells. Journal of Functional Foods, 53, 85–92. https://doi.org/https://doi.org/10.1016/j.jff.2018.12.006
Guo, Y., Wang, K., Wu, B., Wu, P., Duan, Y., & Ma, H. (2020). Production of ACE inhibitory peptides from corn germ meal by an enzymatic membrane reactor with a novel gradient diafiltration feeding working-mode and in vivo evaluation of antihypertensive effect. Journal of Functional Foods, 64(May), 103584. https://doi.org/10.1016/j.jff.2019.103584
Herder, C., Peltonen, M., Koenig, W. et al. (2009). Anti-inflammatory effect of lifestyle changes in the Finnish Diabetes Prevention Study. Diabetologia 52, 433–442. https://doi.org/10.1007/s00125-008-1243-1
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England), 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
Huang, W. H., Sun, J., He, H., Dong, H. W., & Li, J. T. (2011). Antihypertensive effect of corn peptides, produced by a continuous production in enzymatic membrane reactor, in spontaneously hypertensive rats. Food Chemistry, 128(4), 968–973. https://doi.org/10.1016/j.foodchem.2011.03.127
Idehen, E., Tang, Y., & Sang, S. (2016). Bioactive phytochemicals in barley. Journal of Food and Drug Analysis, 1–14. https://doi.org/10.1016/j.jfda.2016.08.002
Jalili, T., Carlstrom, J., Kim, S., Freeman, D., Jin, H., Wu, T.-C., Litwin, S. E., & David Symons, J. (2006). Quercetin-supplemented diets lower blood pressure and attenuate cardiac hypertrophy in rats with aortic constriction. Journal of Cardiovascular Pharmacology, 47(4), 531–541. https://doi.org/10.1097/01.fjc.0000211746.78454.50
Kaiser, S., Martin, M., Lunow, D., Rudolph, S., Mertten, S., Möckel, U., Deußen, A., & Henle, T. (2016). Tryptophan-containing dipeptides are bioavailable and inhibit plasma human angiotensin-converting enzyme in vivo. International Dairy Journal, 52, 107–114. https://doi.org/https://doi.org/10.1016/j.idairyj.2015.09.004
Khan, S., Khan, T., & Shah, A. J. (2018). Total phenolic and flavonoid contents and antihypertensive effect of the crude extract and fractions of Calamintha vulgaris. Phytomedicine, 47, 174–183. https://doi.org/10.1016/j.phymed.2018.04.046
Kim, H. J., Herath, K. H. I. N. M., Dinh, D. T. T., Kim, H.-S., Jeon, Y.-J., Kim, H. J., & Jee, Y. (2021). Sargassum horneri ethanol extract containing polyphenols attenuates PM-induced oxidative stress via ROS scavenging and transition metal chelation. Journal of Functional Foods, 79, 104401. https://doi.org/https://doi.org/10.1016/j.jff.2021.104401
Kopaliani, I., Martin, M., Zatschler, B., Müller, B., & Deussen, A. (2016). Whey peptide Isoleucine-Tryptophan inhibits expression and activity of matrix metalloproteinase-2 in rat aorta. Peptides, 82, 52–59. https://doi.org/https://doi.org/10.1016/j.peptides.2016.05.009
Kris-Etherton, P. M., Hecker, K. D., Bonanome, A., Coval, S. M., Binkoski, A. E., Hilpert, K. F., Griel, A. E., & Etherton, T. D. (2002). Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. The American Journal of Medicine, 113 Suppl, 71S-88S. https://doi.org/10.1016/s0002-9343(01)00995-0
Liu, S., Lu, H., Zhao, Q., He, Y., Niu, J., Debnath, A. K., … Jiang, S. (2005). Theaflavin derivatives in black tea and catechin derivatives in green tea inhibit HIV-1 entry by targeting gp41. Biochimica et Biophysica Acta, 1723(1–3), 270–281. https://doi.org/10.1016/j.bbagen.2005.02.012
Lunow Diana A4 - Kaiser, Susanne A4 - Brückner, Stephan A4 - Gotsch, Astrid A4 - Henle, Thomas, D. A.-L. (2013). Selective release of ACE-inhibiting tryptophan-containing dipeptides from food proteins by enzymatic hydrolysis. European Food Research & Technology, v. 237(1), 27-37–2013 v.237 no.1. https://doi.org/10.1007/s00217-013-2014-x
Lunow, D., Kaiser, S., Rückriemen, J., Pohl, C., & Henle, T. (2015). Tryptophan-containing dipeptides are C-domain selective inhibitors of angiotensin converting enzyme. Food Chemistry, 166, 596–602. https://doi.org/https://doi.org/10.1016/j.foodchem.2014.06.059
Ojeda, D., Jiménez-Ferrer, E., Zamilpa, A., Herrera-Arellano, A., Tortoriello, J., & Alvarez, L. (2010). Inhibition of angiotensin convertin enzyme (ACE) activity by the anthocyanins delphinidin- and cyanidin-3-O-sambubiosides from Hibiscus sabdariffa. Journal of Ethnopharmacology, 127(1), 7–10. https://doi.org/https://doi.org/10.1016/j.jep.2009.09.059
Paraiso, I. L., Revel, J. S., & Stevens, J. F. (2020). Potential use of polyphenols in the battle against COVID-19. Current Opinion in Food Science, 32, 149–155. https://doi.org/https://doi.org/10.1016/j.cofs.2020.08.004
Peñarrieta, J. M., Tejeda, L., Mollinedo, P., Vila, J. L., & Bravo, J. A. (2014). Compuestos fenólicos y su presencia en alimentos. Revista Boliviana de Química, 31(2), 68–81.
Rho, T., Jeong, H. W., Hong, Y. D., Yoon, K., Cho, J. Y., & Yoon, K. D. (2020). Identification of a novel triterpene saponin from Panax ginseng seeds, pseudoginsenoside RT8, and its antiinflammatory activity. Journal of Ginseng Research, 44(1), 145–153. https://doi.org/https://doi.org/10.1016/j.jgr.2018.11.001
Romano, P. S., Waitzman, N. J., Scheffler, R. M., & Pi, R. D. (1995). Folic acid fortification of grain: an economic analysis. American Journal of Public Health, 85(5), 667–676. https://doi.org/10.2105/ajph.85.5.667
Santos, M. C., Toson, N. S. B., Pimentel, M. C. B., Bordignon, S. A. L., Mendez, A. S. L., & Henriques, A. T. (2020). Polyphenols composition from leaves of Cuphea spp. and inhibitor potential, in vitro, of angiotensin I-converting enzyme (ACE). Journal of Ethnopharmacology, 255, 112781. https://doi.org/https://doi.org/10.1016/j.jep.2020.112781
Shrinet, K., Singh, R. K., Chaurasia, A. K., Tripathi, A., & Kumar, A. (2021). Chapter 17 - Bioactive compounds and their future therapeutic applications (R. p. Sinha & D.-P. B. T.-N. B. C. Häder (eds.); pp. 337–362). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-820655-3.00017-3
Shrinet, K., Singh, R. K., Chaurasia, A. K., Tripathi, A., & Kumar, A. (2021). Chapter 17 - Bioactive compounds and their future therapeutic applications (R. p. Sinha & D.-P. B. T.-N. B. C. Häder (eds.); pp. 337–362). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-820655-3.00017-3
Song, J.-M., Lee, K.-H., & Seong, B.-L. (2005). Antiviral effect of catechins in green tea on influenza virus. Antiviral Research, 68(2), 66–74. https://doi.org/10.1016/j.antiviral.2005.06.010
Talhaoui, N., Vezza, T., Gómez-Caravaca, A. M., Fernández-Gutiérrez, A., Gálvez, J., & Segura-Carretero, A. (2016). Phenolic compounds and in vitro immunomodulatory properties of three Andalusian olive leaf extracts. Journal of Functional Foods, 22, 270–277. https://doi.org/https://doi.org/10.1016/j.jff.2016.01.037
Tsao, R. (2010). Chemistry and biochemistry of dietary polyphenols. Nutrients, 2(12), 1231–1246. https://doi.org/10.3390/nu2121231
Utomo, R. Y., Ikawati, M., & Meiyanto, E. (2020). Revealing the Potency of Citrus and Galangal Constituents to Halt SARS-CoV-2 Infection. https://doi.org/10.20944/PREPRINTS202003.0214.V1
Van Hung, P. (2016). Phenolic Compounds of Cereals and Their Antioxidant Capacity. Critical Reviews in Food Science and Nutrition, 56(1), 25–35. https://doi.org/10.1080/10408398.2012.708909
Vuolo, M. M., Lima, V. S., & Maróstica Junior, M. R. (2019). Chapter 2 - Phenolic Compounds: Structure, Classification, and Antioxidant Power (M. R. S. B. T.-B. C. Campos (ed.); pp. 33–50). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-814774-0.00002-5
Wang, P.-H., & Cheng, Y. (2020). Increasing Host Cellular Receptor—Angiotensin-Converting Enzyme 2 (ACE2) Expression by Coronavirus may Facilitate 2019-nCoV Infection. BioRxiv, 2020.02.24.963348. https://doi.org/10.1101/2020.02.24.963348
Wu, D., Ren, J., & Song, C. (2014). Optimization of Enzymatic Hydrolysis of Corn Germ Meal to Prepare ACE Inhibitory Peptides. Science & Technology of Cereals Oils & Foods., 22(01), 51–53.
Yang, F., Chen, X., Huang, M., Yang, Q., Cai, X., Chen, X., Du, M., Huang, J., & Wang, S. (2021). Molecular characteristics and structure–activity relationships of food-derived bioactive peptides. Journal of Integrative Agriculture, 20(9), 2313–2332. https://doi.org/https://doi.org/10.1016/S2095-3119(20)63463-3
Yi, L., Li, Z., Yuan, K., Qu, X., Chen, J., Wang, G., … Xu, X. (2004). Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. Journal of Virology, 78(20), 11334–11339. https://doi.org/10.1128/JVI.78.20.11334-11339.2004
Yousefian, M., Shakour, N., Hosseinzadeh, H., Hayes, A. W., Hadizadeh, F., & Karimi, G. (2019). The natural phenolic compounds as modulators of NADPH oxidases in hypertension. Phytomedicine, 55, 200–213. https://doi.org/10.1016/j.phymed.2018.08.002
Zhang, X.-L., Guo, Y.-S., Wang, C.-H., Li, G.-Q., Xu, J.-J., Chung, H. Y., Ye, W.-C., Li, Y.-L., & Wang, G.-C. (2014). Phenolic compounds from Origanum vulgare and their antioxidant and antiviral activities. Food Chemistry, 152, 300–306. https://doi.org/https://doi.org/10.1016/j.foodchem.2013.11.153
Zhao, Y., Zhao, Z., Wang, Y., Zhou, Y., Ma, Y., & Zuo, W. (2020). Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. BioRxiv, 2020.01.26.919985. https://doi.org/10.1101/2020.01.26.919985
Zibadi, S., Farid, R., Moriguchi, S., Lu, Y., Foo, L. Y., Tehrani, P. M., Ulreich, J. B., & Watson, R. R. (2007). Oral administration of purple passion fruit peel extract attenuates blood pressure in female spontaneously hypertensive rats and humans. Nutrition Research, 27(7), 408–416. https://doi.org/https://doi.org/10.1016/j.nutres.2007.05.004