Una colección infinita de parejas de gráficas isoespectrales

Palabras clave: Laplaciano en gráficas, teoría espectral, eigenvalores enteros, gráficas isoespectrales

Resumen

Se construye una familia infinita de parejas de gráficas isoespectrales, es decir parejas de gráficas no isomorfas cuyos laplacianos tienen los mismos eigenvalores. Las gráficas consideradas, son un caso particular de las gráficas isoespectrales con eigenvalores enteros que pueden obtenerse con el método desarrollado en Merris (1997). En este trabajo, los espectros de las gráficas son calculados de manera directa, usando métodos elementales.

Descargas

La descarga de datos todavía no está disponible.

Citas

Bapat, R. B., Gutman, I., and Xiao, W. (2003). A simple method for computing resistance distance. Z. Naturforsch, pages 494–498.

Berard, P. (1992). Transplantation et isospectralité. Math. Ann., 292:547–559. Brooks, R. (1999). Non-Sunada graphs. Ann. Inst. Fourier, Grenoble, 49(2):707–725.

Brouwer, A. E. and Haemers, W. H. (2012). Spectra of Graphs. Springer, New York.

Buser, P. (1986). Isospectral Riemann surfaces. Annales de l’institut Fourier, 36(2):167–192.

Courant, R. and Hilbert, D. (1989). Methods of Mathematical Physics, volume 1. Wiley, New York.

Cruz-García, S. (2007). Construcción de dominios isoespectrales. Tesis de licenciatura, UAEH.

Cvetkovic, D., Rowlison, P., and Simi´c, S. (2009). Introduction to the Theory of Graph Spectra, volume 75 of London Mathematical Society Student Texts. Cambridge University Press.

Doyle, P. and Snell, J. L. (1984). Random walks and electric networks. American Mathematical Monthly, 94:202.

Evans, L. (2010). Partial Differential Equations. American Mathematical Society, Providence, Rhode Island.

Fiedler, M. (1973). Algebraic connectivty of graphs. Czechoslovak Mathematical Journal, 23:298–305.

Fisher, M. (1966). On hearing the shape of a drum. Journal of Combinatorial Theory, 1:105–125.

Fujii, H. and Katsuda, A. (1999). Isospectral graphs and isoperimetric constants. Discret. Math., 207:33–52.

Godsil, C. and McKay, B. (1982). Constructing cospectral graphs. Aequationes Mathematicae, 25:257–268.

Gordon, C., Perry, P., and Schueth, D. (2005). Isospectral and isoscattering manifolds: a survey of techniques and examples. Geometry, Spectral Theory, Groups, and Dynamics, Contemporary Mathematics, pages 157–179.

Gordon, C., Webb, D., and Wolpert, S. (1992). One cannot hear the shape of a drum. Bull Am Math Soc, 27:134–138.

Gutkin, B. and Smilansky, U. (2001). Can one hear the shape of a graph? Journal of Physics A: Mathematical and General, 34(31):6061–6068.

Halbeisen, L. and Hungerbúhler, N. (1999). Generation of isospectral graphs. Journal of Graph Theory, 31:255–265.

He, C. and van Dam, E. R. (2018). Laplacian spectral characterization of roses. Linear Algebra and its Applications, 536:19–30.

Jorgensen, P. E. T. and Pearse, E. P. J. (2009). Operator theory of electrical resistance networks.

Kac, M. (1966). Can one hear the shape of a drum? American Mathematical Monthly, 73(4:2):1–23.

Klein, D. and Randic, M. (1993). Resistance distance. Journal of Mathematical Chemistry, 12(1):81–95.

Lapidus, M. L. (1991). Can one hear the shape of a fractal drum? Partial resolution of the Weyl-Berry conjecture. In Concus, P., Finn, R., and Hoffman, D. A., editors, Geometric Analysis and Computer Graphics, pages 119–126, New York. Springer New York.

Lax, P. D. (2007). Linear Algebra and Its Applications. Wiley-Interscience, Hoboken, NJ, second edition.

Liu, X., Zhang, Y., and Gui, X. (2008). The multifan graphs are determined by their laplacian spectra. Discrete Mathematics, 308(18):4267–4271.

McKay, B. D. (1977). On the spectral characterisation of trees. Ars Combinatoria, 3:219–232.

Merris, R. (1997). Large families of Laplacian isospectral graphs. Linear and Multilinear Algebra, 43:201–205.

Milnor, J. (1964). Eigenvalues of the Laplace operator on certain manifolds. Proceedings of the National Academy of Sciences, 51(4):542–542.

Nering, E. (1977). Álgebra Lineal y Teoría de Matrices. Limusa.

Omidi, G. R. and Tajbakhsh, K. (2007). Starlike trees are determined by their Laplacian spectrum. Linear Algebra and its Applications, 422:654–658. Seress, A. (2000). Large families of cospectral graphs. Designs, Codes and Cryptography, 21:205–208.

Strang, G. (2006). Linear algebra and its applications. Thomson, Brooks/Cole, Belmont, CA.

Sunada, T. (1985). Riemannian coverings and isospectral manifolds. Annals of Mathematics, 121(1):169–186.

Tan, J. (1998). On isospectral graphs. Interdisciplinary Information Sciences, 4(2):117–124.

Van Dam, E. R. and Haemers, W. H. (2003). Which graphs are determined by their spectrum? Linear Algebra and its Applications, 373:241–272.

von Luxburg, U. (2007). A tutorial on spectral clustering. Stat. Comput., 17(4):395–416.

Weyl, H. (1911). Ueber die asymptotische Verteilung der Eigenwerte. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1911:110–117.

Yang, X. and Wang, L. (2020). Laplacian spectral characterization of (broken) dandelion graphs. Indian Journal of Pure and Applied Mathematics, 51:915–933.

Publicado
2022-04-22
Cómo citar
Menendez-Conde Lara, F. (2022). Una colección infinita de parejas de gráficas isoespectrales. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10(Especial), 1-8. https://doi.org/10.29057/icbi.v10iEspecial.8606