Algoritmo del Búfalo Africano para resolver el problema de corte unidimensional
Resumen
El problema de corte unidimensional consiste en cortar un objeto o stock, cuya longitud puede ser finita o infinita, para producir objetos más pequeños o ítems con longitud finita. Este problema aparece en una gran cantidad de industrias alrededor del mundo. En este trabajo se propone adaptar el algoritmo de optimización del búfalo Africano con el objetivo de reducir los stocks necesarios para satisfacer la demanda de ítems. El algoritmo se probó en un conjunto de instancias que son referencia para este problema. Los resultados indican que el algoritmo consigue soluciones competitivas de acuerdo a la minimización del stock.
Descargas
Citas
Alfares, H. K. and Alsawafy, O. G. (2019). A least-loss algorithm for a biobjective one-dimensional cutting-stock problem. International Journal of Applied Industrial Engineering (IJAIE), 6(2):1–19.
Chen, Y.-H., Huang, H.-C., Cai, H.-Y., and Chen, P.-F. (2019). A genetic algorithm approach for the multiple length cutting stock problem. In 2019 IEEE 1st Global Conference on Life Sciences and Technologies (LifeTech), pages 162–165.
Chiong, R., Chang, Y. Y., Chai, P. C., and Wong, A. L. (2008). A selective mutation based evolutionary programming for solving cutting stock problem without contiguity. In 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pages 1671–1677.
Cui, Y., Zhong, C., and Yao, Y. (2015). Pattern-set generation algorithm for the one-dimensional cutting stock problem with setup cost. European Journal of Operational Research, 243(2):540–546.
Dikili, A. C. and Barlas, B. (2011). A generalized approach to the solution of one-dimensional stock-cutting problem for small shipyards. Journal of marine science and technology, 19(4):368–376.
Dyckhoff, H. (1990). A typology of cutting and packing problems. European Journal of Operational Research, 44(2):145–159. Cutting and Packing.
Evtimov, G. and Fidanova, S. (2018). Ant Colony Optimization Algorithm for 1D Cutting Stock Problem, pages 25–31. Springer International Publishing, Cham.
Garraffa, M., Salassa, F., Vancroonenburg, W., Vanden Berghe, G., and Wauters, T. (2016). The one-dimensional cutting stock problem with sequencedependent cut losses. International Transactions in Operational Research, 23(1-2):5–24.
Gherboudj, A. (2019). African buffalo optimization for one dimensional bin packing problem. International Journal of Swarm Intelligence Research (IJSIR), 10(4):38–52.
Gilmore, P. C. and Gomory, R. E. (1961). A linear programming approach to the cutting-stock problem. Operations Research, 9(6):849–859.
Gilmore, P. C. and Gomory, R. E. (1963). A linear programming approach to the cutting stock problem—part ii. Operations Research, 11(6):863–888.
Hinterding, R. and Khan, L. (1993). Genetic algorithms for cutting stock problems: with and without contiguity. In Progress in evolutionary computation, pages 166–186. Springer.
Jahromi, M. H., Tavakkoli-Moghaddam, R., Makui, A., and Shamsi, A. (2012). Solving an one-dimensional cutting stock problem by simulated annealing and tabu search. Journal of Industrial Engineering International, 8(1):1–8.
Kantorovich, L. V. (1960). Mathematical methods of organizing and planning production. Management Science, 6(4):366–422.
Levine, J. and Ducatelle, F. (2004). Ant colony optimization and local search for bin packing and cutting stock problems. Journal of the Operational Research Society, 55(7):705–716.
Li, Y., Zheng, B., and Dai, Z. (2007). General particle swarm optimization based on simulated annealing for multi-specification one-dimensional cutting stock problem. In Wang, Y., Cheung, Y.-m., and Liu, H., editors, Computational Intelligence and Security, pages 67–76, Berlin, Heidelberg. Springer Berlin Heidelberg.
Liang, K.-H., Yao, X., Newton, C., and Hoffman, D. (2002). A new evolutionary approach to cutting stock problems with and without contiguity. Computers & Operations Research, 29(12):1641–1659.
Liu, B., Wang, L., Qian, B., and Jin, Y. (2008). Hybrid particle swarm optimization for stochastic flow shop scheduling with no-wait constraint. IFAC Proceedings Volumes, 41(2):15855–15860. 17th IFAC World Congress.
Machado, A. A., Zayatz, J. C., da Silva, M. M., Melluzzi Neto, G., Leal, G. C. L., and Palma Lima, R. H. (2020). Aluminum bar cutting optimization for door and window manufacturing. DYNA, 87(212):155–162.
Odili, J. B., Kahar, M. N. M., and Anwar, S. (2015a). African buffalo optimization: a swarm-intelligence technique. Procedia Computer Science, 76:443–448.
Odili, J. B., Kahar, M. N. M., Anwar, S., and Azrag, M. A. K. (2015b). A comparative study of african buffalo optimization and randomized insertion algorithm for asymmetric travelling salesman’s problem. In 2015 4th International Conference on Software Engineering and Computer Systems (ICSECS), pages 90–95.
Odili, J. B. and Mohmad Kahar, M. N. (2016). Solving the traveling salesman’s problem using the african buffalo optimization. Computational intelligence and neuroscience, 2016.
Odili, J. B., Mohmad Kahar, M. N., and Noraziah, A. (2017). Parameterstuning of pid controller for automatic voltage regulators using the african buffalo optimization. PLOS ONE, 12(4):1–17.
Ogunranti, G. A. and Oluleye, A. E. (2016). Minimizing waste (off-cuts) using cutting stock model: The case of one dimensional cutting stock problem in wood working industry. Journal of Industrial Engineering and Management, 9(3):834–859.
Parmar, K. B., Prajapati, H. B., and Dabhi, V. K. (2015). Cutting stock problem: A solution based on novel pattern based chromosome representation using modified ga. In 2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015], pages 1–7.
Peng, J. and Chu, Z. S. (2010a). A hybrid ant colony algorithm for the cutting stock problem. In 2010 International Conference on Future Information Technology and Management Engineering, volume 2, pages 32–35.
Peng, J. and Chu, Z. S. (2010b). A hybrid multi-chromosome genetic algorithm for the cutting stock problem. In 2010 3rd International Conference on Information Management, Innovation Management and Industrial Engineering, volume 1, pages 508–511.
Pitombeira-Neto, A. R. and de Athayde Prata, B. (2019). A matheuristic algorithm for the one-dimensional cutting stock and scheduling problem with heterogeneous orders. Top, pages 1–15.
Ravelo, S. V., Meneses, C. N., and Santos, M. O. (2020). Meta-heuristics for the one-dimensional cutting stock problem with usable leftover. Journal of Heuristics, 26(4):585–618.
Santos, J. L., Santos, J., Ferreira, M. J., Alves, N., and Guevara, M. (2018). Application of the two-stage one-dimensional cutting stock problem in the steel industry. In 2018 IEEE 27th International Symposium on Industrial Electronics (ISIE), pages 683–690.
Sarper, H. and Jaksic, N. I. (2018). Evaluation of procurement scenarios in one-dimensional cutting stock problem with a random demand mix. Procedia Manufacturing, 17:827–834.
Scheithauer, G. (2017). Introduction to cutting and packing optimization: Problems, modeling approaches, solution methods, volume 263. Springer.
Zanarini, A. (2017). Optimal stock sizing in a cutting stock problem with stochastic demands. In Salvagnin, D. and Lombardi, M., editors, Integration of AI and OR Techniques in Constraint Programming, pages 293–301, Cham.
Springer International Publishing.