PEAD reciclado reforzado por fibra de vidrio. Aplicación en cubiertas

Palabras clave: PEAD, reciclaje, fibra de vidrio, cubiertas ligeras, análisis térmicos.

Resumen

La gran cantidad de residuos plásticos los hace una fuente de materia prima a través del reciclaje. El polietileno de alta densidad es el segundo plástico más consumido y producido en México y a nivel global. En la presente investigación se ha generado el diseño de un material compuesto, con matriz de polietileno de alta densidad reciclado, reforzado por fibra de vidrio corta clase E, con el objetivo de producir perfiles estructurales que se utilicen en armaduras para cubiertas ligeras de gran claro. Se ha realizado la caracterización mecánica del material, para conocer las propiedades a tensión y a compresión. También la caracterización física para conocer la densidad y expansión térmica lineal. Así como la caracterización térmica, con el objetivo de conocer los parámetros de producción y estabilidad térmica. Los resultados obtenidos de la caracterización mecánica y física, se introducirán en una herramienta digitad para conocer la utilidad del material conforme al análisis y diseño estructural, aplicado a la arquitectura.

Descargas

La descarga de datos todavía no está disponible.

Citas

Askeland, D. R., Wright, W. J., Bhattacharya, D. k., Chhabra, R. P., & Peralta Rosales, L. (2017). Ciencia e ingeniería de materiales (Séptima edición). Cengage Learning Editores.

Bajracharya, R. M., Manalo, A. C., Karunasena, W., & Lau, K. (2016). Experimental and theoretical studies on the properties of injection moulded glass fibre reinforced mixed plastics composites. Composites Part A: Applied Science and Manufacturing, 84, 393-405. https://doi.org/10.1016/j.compositesa.2016.02.025

Bozorg-Haddad, A., Iskander, M., & Chen, Y. (2012). Compressive strength and creep of recycled HDPE used to manufacture polymeric piling. Construction and Building Materials, 26(1), 505-515. https://doi.org/10.1016/j.conbuildmat.2011.06.051

Callister, W. D. (2019). Ciencia e ingeniería de los materiales. Reverte.

Carroll, D., Stone, R., Sirignano, A., Saindon, R., Gose, S., & Friedman, M. (2001). Structural Properties of Recycled Plastic/Sawdust Lumber Decking Planks. Resources, Conservation and Recycling. https://doi.org/10.1016/S0921-3449(00)00081-1

CFE. (2008). Manual de diseño de obras civiles. Diseño por viento.

Chandra, V., Kim, D. J. S., Nosker, D. T. J., & Nagle, G. J. (s. f.). World’s First Thermoplastic Bridges. 11.

D20 Committee. (2020a). Test Method for Bulk Density And Specific Gravity of Plastic Lumber and Shapes by Displacement. ASTM International. https://doi.org/10.1520/D6111-19A

D20 Committee. (2020b). Test Method for Compressive Properties of Plastic Lumber and Shapes. ASTM International. https://doi.org/10.1520/D6108-19

Estudios ANIPAC. (2022). https://anipac.org.mx/estudios-anipac/

Frech, C. (2002). Green Plastics: An Introduction to the New Science of Biodegradable Plastics (Stevens, E. S.). Journal of Chemical Education, 79, 1072. https://doi.org/10.1021/ed079p1072.1

Garraín, D., Vidal, R., Franco, V., & Martínez, P. (2008). Análisis del ciclo de vida del polietileno de alta densidad. 6.

Goodship, V. (2007). Introduction to Plastics Recycling. iSmithers Rapra Publishing.

Hopewell, J., Dvorak, R., & Kosior, E. (2009). Plastics recycling: Challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2115. https://doi.org/10.1098/rstb.2008.0311

Kissin, Y. V. (2013). Melting Point of Polyethylene Resin. En Y. V. Kissin (Ed.), Polyethylene (pp. 57-72). Hanser. https://doi.org/10.3139/9781569905210.003

Lampo, R., Nosker, T., Nagle, G., Nemeth, S., Palutke, K., & Clark, L. (2018). Demonstration of thermoplastic composite I-beam design bridge at Camp Mackall, NC: Final report on Projects FY08-16 and FY09-31. Construction Engineering Research Laboratory (U.S.). https://doi.org/10.21079/11681/26030

Lotfy, I., Farhat, M., Issa, M. A., & Al-Obaidi, M. (2016). Flexural behavior of high-density polyethylene railroad crossties. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230(3), Article 3. https://trid.trb.org/view/1398881

Lozada, S. A., & R, P. (2018). Sistemas estructurales. Universidad Nacional Autónoma de México, Facultad de Arquitectura. http://up-rid2.up.ac.pa:8080/xmlui/handle/123456789/1822

Martin Piris, N., Güemes Gordo, A., Arribas Arribas, C., Badia Pérez, J. M., Fernández López, A., González Prolongo, M., Pintado Sanjuanbenito, J. M., & Salom Coll, C. (2012). Ciencia de materiales para ingenieros (Primera edición). Pearson Education.

Mechanics of Composite Structural Elements | Holm Altenbach | Springer. (2021, agosto 17). https://www.springer.com/gp/book/9789811089343

Naturales, S. de M. A. y R. (2020, mayo). Presenta Semarnat el Diagnóstico Básico para la Gestión Integral de Residuos 2020. gob.mx. http://www.gob.mx/semarnat/prensa/presenta-semarnat-el-diagnostico-basico-para-la-gestion-integral-de-residuos-2020?idiom=es

Plastimagen. (2022, mayo). https://www.plastimagen.com.mx/es/prensa/boletines

Polietileno de alta densidad. (2020, noviembre 7). /cmematerials/es/content/polietileno-de-alta-densidad

Salcedo Cortés, O. M., Santa Ana Lozada, P. R., Zolotukhin, M., Muciño Vélez, A., Rangel Dávalos, J., & Zeevaert Alcantara, L. (2015). Madera plástica de pead (polietileno de alta densidad) reciclado como material estructural (Facultad de Arquitectura. Posgrado).

Slaughter, A. E. (2004). DESIGN AND FATIGUE OF A STRUCTURAL WOOD-PLASTIC COMPOSITE By.

Spalding, M. A., & Chatterjee, A. (2017). Handbook of Industrial Polyethylene and Technology: Definitive Guide to Manufacturing, Properties, Processing, Applications and Markets Set. John Wiley & Sons.

Standard Specification for Polyethylene-Based Structural-Grade Plastic Lumber for Outdoor Applications. (2017). https://www.astm.org/d7568-17.html

Standard Test Method for Tensile Properties of Plastics. (s. f.). Recuperado 9 de febrero de 2022, de https://www.astm.org/d0638-14.html

Wallenberger, F. T., & Bingham, P. A. (2010). Fiberglass and glass technology: Energy-friendly compositions and applications. Springer.

Zyka, K., & Mohajerani, A. (2016). Composite piles: A review. Construction and Building Materials, 107, 394-410. https://doi.org/10.1016/j.conbuildmat.2016.01.01

Publicado
2022-06-24
Cómo citar
Solis-Campos, F., & Santa Ana Lozada, P. R. (2022). PEAD reciclado reforzado por fibra de vidrio. Aplicación en cubiertas. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10(Especial2), 126-135. https://doi.org/10.29057/icbi.v10iEspecial2.8700