Análisis de la marcha humana basada en reconocimiento automático: Una revisión
Resumen
El análisis de la marcha es una de las áreas de investigación más importantes y desafiantes en entornos clínicos y de computación. La biomecánica de la marcha y el reconocimiento humano de la marcha son dos áreas prinicpales de interés. Las alteraciones en la marcha pueden causar problemas de salud física y mental en las personas, por lo que los diagnósticos y tratamientos derivados del análisis de la marcha óptima son de gran utilidad en el ámbito clínico. Este documento examina los métodos, las aplicaciones y las plataformas de análisis de la marcha, la biomecánica de la marcha, así como los enfoques y conjuntos de datos de reconocimiento de la marcha. Luego, describimos las contribuciones en la cinemática de la marcha hacia adelante, útiles para evaluar marchas como agachado y normal. Además, se describe un marco para el reconocimiento de la marcha antiálgica basado en la actividad humana, utilizando el giroscopio integrado en un teléfono inteligente. Se utilizaron diferentes algoritmos y métricas para realizar el reconocimiento de la marcha, destacando Support Vector Machines, Naive Bayes, k-Nearest Neighbours y Accuracy y F-measure, respectivamente. Finalmente, discutimos los desafíos y las perspectivas futuras en el reconocimiento de la marcha.
Descargas
Citas
Alawar, H. M., Ugail, H., Kamala, M. A., and Connah, D. (2016). Bradford multi-modal gait database: Gateway to using static measurements to create a dynamic gait signature.
Alharthi, A. S., Casson, A. J., and Ozanyan, K. B. (2021). Spatiotemporal analysis by deep learning of gait signatures from floor sensors. IEEE Sensors Journal, 21(15):16904–16914.
Ancillao, A. (2018). Modern functional evaluation methods for muscle strength and gait analysis. Springer.
Ancillao, A., Tedesco, S., Barton, J., and O’Flynn, B. (2018). Indirect measurement of ground reaction forces and moments by means of wearable inertial sensors: A systematic review. Sensors, 18(8):2564.
Arafsha, F., Hanna, C., Aboualmagd, A., Fraser, S., and El Saddik, A. (2018). Instrumented wireless smartinsole system for mobile gait analysis: A validation pilot study with tekscan strideway. Journal of Sensor and Actuator Networks, 7(3):36.
Arai, K. and Asmara, R. A. (2013). 3d skeleton model derived from kinect depth sensor camera and its application to walking style quality evaluations. International Journal of Advanced Research in Artificial Intelligence, 2(7):24–28.
Arellano-González, J. C., Medellín-Castillo, H. I., Cervantes-Sánchez, J. J., and Vidal-Lesso, A. (2021). A practical review of the biomechanical parameters commonly used in the assessment of human gait. Mexican Journal of Biomedical Engineering, 42(3):6–27.
Beaulieu, M. L., Lamontagne, M., and Beaulé, P. E. (2010). Lower limb biomechanics during gait do not return to normal following total hip arthroplasty. Gait & posture, 32(2):269–273.
Cardona, L. G., Ruiz, J. C., and Rendón, C. A´ . (2021). Fuerzas de reacción desde el piso durante la marcha en personas con amputación transtibial unilateral, serie de casos. Rehabilitación.
Castro, F. M., Guil, N., Marín-Jiménez, M. J., Pérez-Serrano, J., and Ujaldón, M. (2019). Energy-based tuning of convolutional neural networks on multi-gpus. Concurrency and Computation: Practice and Experience, 31(21):e4786.
Cheung, W. and Vhaduri, S. (2020). Continuous authentication of wearable device users from heart rate, gait, and breathing data. In 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), pages 587–592. IEEE.
Chinn, L., Dicharry, J., Hart, J. M., Saliba, S., Wilder, R., and Hertel, J. (2014). Gait kinematics after taping in participants with chronic ankle instability. Journal of athletic training, 49(3):322–330.
Correa-Bautista, O. A. Domínguez-Ramírez, L. I. L.-V. (2012). Procedimiento para la caracterización biomecánica del ciclo de marcha. In 5th Congreso Nacional de Mecatrónica y Tecnologías Inteligentes, CONAMTI, pages 1–4. TESHU.
Darter, B. J., Rodriguez, K. M., and Wilken, J. M. (2013). Test–retest reliability and minimum detectable change using the k4b2: oxygen consumption, gait efficiency, and heart rate for healthy adults during submaximal walking. Research quarterly for exercise and sport, 84(2):223–231.
Dehzangi, O., Taherisadr, M., and ChangalVala, R. (2017). Imu-based gait recognition using convolutional neural networks and multi-sensor fusion. Sensors, 17(12):2735.
Di Nardo, F., Morbidoni, C., Cucchiarelli, A., and Fioretti, S. (2020). Recognition of gait phases with a single knee electrogoniometer: A deep learning approach. Electronics, 9(2):355.
Fang, Q., Zhang, Z., and Tu, Y. (2014). Application of gait analysis for hemiplegic patients using six-axis wearable inertia sensors. In IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society, pages 3993–3996. IEEE.
Figueiredo, J., Santos, C. P., and Moreno, J. C. (2018). Automatic recognition of gait patterns in human motor disorders using machine learning: A review. Medical engineering & physics, 53:1–12.
Frenkel-Toledo, S., Giladi, N., Peretz, C., Herman, T., Gruendlinger, L., and Hausdorff, J. M. (2005). Effect of gait speed on gait rhythmicity in parkinson’s disease: variability of stride time and swing time respond differently.
Journal of neuroengineering and rehabilitation, 2(1):1–7. Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C.
Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., and Stanley, H. E. (2000). Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. circulation, 101(23):e215–e220.
Gonzalez-Islas, J. C., Dominguez-Ramirez, O. A., Lopez-Ortega, O., Castro-Espinoza, F. A., Alonso-Lavernia, M., et al. (2020). Gait analysis for normal and crouch gaits applying no-common metrics in the cartesian space. In International Conference on NeuroRehabilitation, pages 317–326. Springer.
Gonzalez-Islas, J.-C., Dominguez-Ramirez, O.-A., Lopez-Ortega, O., Paredes-Bautista, R.-D., and Diazgiron-Aguilar, D. (2021). Machine learning framework for antalgic gait recognition based on human activity. In Mexican International Conference on Artificial Intelligence, pages 228–239. Springer.
Hausdorff, J., Lertratanakul, A., Cudkowicz, M., Peterson, A., Kaliton, D., and Goldberger, A. (2019). Gait dynamics in neuro-degenerative disease data base. Last accessed in March, 10th.
Hausdorff, J. M., Cudkowicz, M. E., Firtion, R., Wei, J. Y., and Goldberger, A. L. (1998). Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in parkinson’s disease and huntington’s disease. Movement disorders, 13(3):428–437.
Hnatiuc, M., Geman, O., Avram, A. G., Gupta, D., and Shankar, K. (2021). Human signature identification using iot technology and gait recognition. Electronics, 10(7):852.
Jun, K., Lee, Y., Lee, S., Lee, D.-W., and Kim, M. S. (2020). Pathological gait classification using kinect v2 and gated recurrent neural networks. IEEE Access, 8:139881–139891.
Kazemi, K., Arab, A. M., Abdollahi, I., López-López, D., and Calvo-Lobo, C. (2017). Electromiography comparison of distal and proximal lower limb muscle activity patterns during external perturbation in subjects with and without functional ankle instability. Human Movement Science, 55:211–220.
Kelly, H. D. (2020). Forensic Gait Analysis. CRC Press. Khan, F., Afzal,W., Ahmed, A., and Fatima, M. (2019). Changes in gait parameters during multi-tasking in healthy young individuals using gaitrite system. Rawal Medical Journal, 44(1):162–164.
Khandelwal, S. and Wickström, N. (2017). Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the marea gait database. Gait & posture, 51:84–90.
Klöpfer-Krämer, I., Brand, A., Wackerle, H., Müßig, J., Kröger, I., and Augat, P. (2020). Gait analysis–available platforms for outcome assessment. Injury, 51:S90–S96.
Levine, D., Richards, J., and Whittle, M. W. (2012). Whittle’s gait analysis. Elsevier health sciences.
Li, J., Wang, Z., Shi, X., Qiu, S., Zhao, H., and Guo, M. (2018). Quantitative analysis of abnormal and normal gait based on inertial sensors. In 2018 IEEE 22nd International Conference on Computer Supported Cooperative Work in Design ((CSCWD)), pages 365–370. IEEE.
Lopez-Fernández, D., Madrid-Cuevas, F. J., Carmona-Poyato, A´ ., Marın-Jimenez, M. J., and Muñoz-Salinas, R. (2014). The ava multi-view dataset for gait recognition. In International workshop on activity monitoring by multiple distributed sensing, pages 26–39. Springer.
Luo, Y., Coppola, S. M., Dixon, P. C., Li, S., Dennerlein, J. T., and Hu, B. (2020). A database of human gait performance on irregular and uneven surfaces collected by wearable sensors. Scientific data, 7(1):1–9.
Mariani, B., Hoskovec, C., Rochat, S., B¨ula, C., Penders, J., and Aminian, K. (2010). 3d gait assessment in young and elderly subjects using foot-worn inertial sensors. Journal of biomechanics, 43(15):2999–3006.
Mathworks, I. (2018). Mastering machine learning: A step-by-step guide with matlab. Mathworks Inc.
Mc Ardle, R., Del Din, S., Galna, B., Thomas, A., and Rochester, L. (2020). Differentiating dementia disease subtypes with gait analysis: feasibility of wearable sensors? Gait & posture, 76:372–376.
Munteanu, S. and Barton, C. (2010). Lower limb biomechanics during running in individuals with achilles tendinopathy: A systematic review. Journal of Science and Medicine in Sport, 13:e74–e75.
Muro-De-La-Herran, A., Garcia-Zapirain, B., and Mendez-Zorrilla, A. (2014). Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications. Sensors, 14(2):3362–3394.
Nazmi, N., Rahman, M. A. A., Yamamoto, S.-I., and Ahmad, S. A. (2019). Walking gait event detection based on electromyography signals using artificial neural network. Biomedical Signal Processing and Control, 47:334–343.
Ngo, T. T., Makihara, Y., Nagahara, H., Mukaigawa, Y., and Yagi, Y. (2014). The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication. Pattern Recognition, 47(1):228–237.
Ogihara, H., Tsushima, E., Kamo, T., Sato, T., Matsushima, A., Niioka, Y., Asahi, R., and Azami, M. (2020). Kinematic gait asymmetry assessment using joint angle data in patients with chronic stroke—a normalized crosscorrelation approach. Gait & posture, 80:168–173.
Pla, A., Mordvanyuk, N., L´opez, B., Raaben, M., Blokhuis, T. J., and Holstlag, H. R. (2017). Bag-of-steps: Predicting lower-limb fracture rehabilitation length by weight loading analysis. Neurocomputing, 268:109–115.
Pogorelc, B., Bosníc, Z., and Gams, M. (2012). Automatic recognition of gaitrelated health problems in the elderly using machine learning. Multimedia tools and applications, 58(2):333–354.
Raziff, A. R. A., Sulaiman, M. N., Mustapha, N., and Perumal, T. (2016). Gait identification using one-vs-one classifier model. In 2016 IEEE Conference on Open Systems (ICOS), pages 71–75. IEEE.
Rigoldi, C., Galli, M., Cimolin, V., Camerota, F., Celletti, C., Tenore, N., and Albertini, G. (2012). Gait strategy in patients with ehlers-danlos syndrome hypermobility type and down syndrome. Research in developmental disabilities, 33(5):1437–1442.
Rossi, F., Bianconi, T., Leo, A., Pavan, E., Frigo, C., Asaro, M., Zarbo, M., Cassinis, A., and Spinelli, M. (2018). Study of muscle activation during in-water gait of sci patients using surface emg. Annals of Physical and Rehabilitation Medicine, 61:e443.
Saad, A., Zaarour, I., Guerin, F., Bejjani, P., Ayache, M., and Lefebvre, D. (2017). Detection of freezing of gait for parkinson’s disease patients with multi-sensor device and gaussian neural networks. International Journal of Machine Learning and Cybernetics, 8(3):941–954.
Saboor, A., Kask, T., Kuusik, A., Alam, M. M., Le Moullec, Y., Niazi, I. K., Zoha, A., and Ahmad, R. (2020). Latest research trends in gait analysis using wearable sensors and machine learning: A systematic review. Ieee Access, 8:167830–167864.
Sahu, G., Parida, P., et al. (2020). A contemporary survey on human gait recognition. Journal of Information Assurance & Security, 15(3).
Schmidt, B. G., Gerzson, L. R., and de Almeida, C. S. (2020). The use of surface electromiography as a measure of physiotherapy outcomes in children with cerebral palsy: a systematic review. Journal of Human Growth and Development, 30(2):216–226.
Schreiber, C. and Moissenet, F. (2019). A multimodal dataset of human gait at different walking speeds established on injury-free adult participants. Scientific data, 6(1):1–7.
Sepas-Moghaddam, A. and Etemad, A. (2022). Deep gait recognition: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence. Seth, A., Hicks, J. L., Uchida, T. K., Habib, A., Dembia, C. L., Dunne, J. J., Ong, C. F., DeMers, M. S., Rajagopal, A., Millard, M., et al. (2018).
Opensim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS computational biology, 14(7):e1006223.
Sharif Bidabadi, S., Tan, T., Murray, I., and Lee, G. (2019). Tracking foot drop recovery following lumbar-spine surgery, applying multiclass gait classification using machine learning techniques. Sensors, 19(11):2542.
Singh, J. P., Jain, S., Arora, S., and Singh, U. P. (2018). Vision-based gait recognition: A survey. IEEE Access, 6:70497–70527.
Sprager, S. and Juric, M. B. (2015). Inertial sensor-based gait recognition: A review. Sensors, 15(9):22089–22127.
Steinmetzer, T., Wilberg, S., Bönninger, I., and Travieso, C. M. (2020). Analyzing gait symmetry with automatically synchronized wearable sensors in daily life. Microprocessors and Microsystems, 77:103118.
Stergiou, N. (2020). Biomechanics and gait analysis. Academic Press.
Sugomori, Y. (2016). Java Deep Learning Essentials. Packt Publishing Ltd. Surer, E. and Kose, A. (2011). Methods and technologies for gait analysis. In Computer analysis of human behavior, pages 105–123. Springer.
Taborri, J., Scalona, E., Palermo, E., Rossi, S., and Cappa, P. (2015). Validation of inter-subject training for hidden markov models applied to gait phase detection in children with cerebral palsy. Sensors, 15(9):24514–24529.
Takayanagi, N., Sudo, M., Yamashiro, Y., Lee, S., Kobayashi, Y., Niki, Y., and Shimada, H. (2019). Relationship between daily and in-laboratory gait speed among healthy community-dwelling older adults. Scientific reports, 9(1):1–6.
Takemura, N., Makihara, Y., Muramatsu, D., Echigo, T., and Yagi, Y. (2018). Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition. IPSJ Transactions on Computer Vision and Applications, 10(1):1–14.
Wan, C.,Wang, L., and Phoha, V. V. (2018). A survey on gait recognition. ACM Computing Surveys (CSUR), 51(5):1–35. Wang, J., She, M., Nahavandi, S., and Kouzani, A. (2010). A review of visionbased
gait recognition methods for human identification. In 2010 international conference on digital image computing: techniques and applications, pages 320–327. IEEE.
Weiss, R. J., Wretenberg, P., Stark, A., Palmblad, K., Larsson, P., Gr¨ondal, L., and Brostr¨om, E. (2008). Gait pattern in rheumatoid arthritis. Gait & posture, 28(2):229–234.
Whittle, M. W. (2014). Gait analysis: an introduction. Butterworth-Heinemann.
Xiao, Z. G. and Menon, C. (2014). Towards the development of a wearable feedback system for monitoring the activities of the upper-extremities. Journal of neuroengineering and rehabilitation, 11(1):1–13.
Xu, H., Li, X., Shi, Y., An, L., Taylor, D., Christman, M., Morse, J., and Merryweather, A. (2021). Hospital bed height influences biomechanics during bed egress: A comparative controlled study of patients with parkinson disease. Journal of Biomechanics, 115:110116.
Zakaria, N. K., Ismail, N., Jailani, R., Tahir, N., and Taib, M. (2014). Preliminary study on gait analysis among children. In 2014 IEEE 10th International Colloquium on Signal Processing and its Applications, pages 225–228. IEEE.
Zheng, S., Zhang, J., Huang, K., He, R., and Tan, T. (2011). Robust view transformation model for gait recognition. In 2011 18th IEEE international conference on image processing, pages 2073–2076. IEEE.