La dimensión fractal como parte de un modelo computacional para predecir el espesor de películas delgadas de ZnO

  • Héctor Daniel Molina-Ruiz Universidad Autónoma del Estado de Hidalgo
  • Obed Pérez Cortez Universidad Autónoma del Estado de Hidalgo
  • Heberto Gómez Pozos Universidad Autónoma del Estado de Hidalgo
  • Heydy Castillejos Fernández Universidad Autónoma del Estado de Hidalgo
Palabras clave: Dimensión fractal, Espesor de películas delgadas, Red neuronal, SEM (scanning electron microscopy), TensorFlow®

Resumen

Si bien es cierto, existen aplicaciones computacionales en el campo nanométrico, particularmente en el contexto de la manipulación de imágenes SEM (scanning electron microscopy), también es cierto que esta área de estudio, aun presenta oportunidades en la construcción del conocimiento. Particularmente, en el presente estudio, se aborda la relación aparentemente biunívoca que puede generarse entre el espesor de una película delgada y la dimensión fractal de su imagen SEM ya segmentada. A través del uso del módulo Keras® perteneciente a la librería de TensorFlow® mediate la programación del código en Colab® de Google®, el cual utiliza la versión de Python® 3.6.9, se obtuvieron las variables internas del modelo [86.4897&87.681694] que permite predicción del espesor con base en una dimensión fractal arbitraria (i.e. dimensión fractal = 1.99, espesor predicho = 259.7962 [nm]).

Descargas

La descarga de datos todavía no está disponible.

Citas

Abraham, M. R. (2008). Importance of a Theoretical Framework for Research. In: Bunce, D.M. & Cole, R.S. (eds.), Nuts and Bolts of Chemical Education Research, 47–66, DOI: [10.1021/bk-2008-0976.ch005], URL: [https://pubs.acs.org/doi/10.1021/bk-2008-0976.ch005].

Al-Kuhaili, M. F., Durrani, S. M. A. &Bakhtiari, I. A. (2008). Carbon monoxide gas-sensing properties of CeO2–ZnO thin films Applied Surface Science, 255(5), 3033–3039, DOI: [10.1016/j.apsusc.2008.08.058], URL: [https://www.sciencedirect.com/science/article/pii/S0169433208019235].

Arif, M., Shkir, M., AlFaify, S., Ganesh, V., Sanger, A., Algarni, H., Vilarinho, P.M. & Singh, A. (2019). A structural, morphological, linear, and nonlinear optical spectroscopic studies of nanostructured Al-doped ZnO thin films: An effect of Al concentrations, Journal of Materials Research, 34(8), 1309 – 1317, URL: [https://www.cambridge.org/core/journals/journal-of-materials-research/article/structural-morphological-linear-and-nonlinear-optical-spectroscopic-studies-of-nanostructured-aldoped-zno-thin-films-an-effect-of-al-concentrations/460787FD52D6C5C9BB0BE09467AA1B8A].

Basavaprasad, B., & Ravi, M. (2014). A study on the importance of image processing and its applications, IJRET: International Journal of Research in Engineering and Technology, 3, 1, URL: [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.676.3819&rep=rep1&type=pdf].

Bi, X., Ren, A. Li, S., Han, M. & Li, Q. (2015). An Advanced Partial Discharge Recognition Strategy of Power Cable, Journal of Electrical and Computer Engineering, DOI: [10.1155/2015/174538], URL: [http://downloads.hindawi.com/journals/jece/2015/174538.pdf] & [https://dl.acm.org/doi/pdf/10.1155/2015/174538].

Chaabouni, F., Abaab, M. &Rezig, B. (2004). Metrological Characterization of ZnO Oxygen Sensor at Room Temperature, Sensors and Actuators B: Chemical, Vol. 100, No. 1-2, pp. 200-204, DOI: [10.1016/j.snb.2003.12.059], URL: [https://www.researchgate.net/publication/245083491_Metrological_characteristics_of_ZNO_oxygen_sensor_at_room_temperature].

Chan, T.F. &Vese, L.A. (1999) An active contour model without edges,” Lecture Notes in Computer Science, vol. 1682, pp. 141–151, DOI: [10.1007/3-540-48236-9_13], URL: [http://dx.doi.org/10.1007/3-540-48236-9_13].

Chaudhuri, B.B. & Sarkar, N. (1995). Texture segmentation using fractal dimension, IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(1), URL: [https://www.researchgate.net/profile/Bidyut_Chaudhuri/publication/3192358_Texture_Segmentation_Using_Fractal_Dimension/links/56fb7b9508ae3c0f264c0fe2.pdf].

Ennaceri, H., Boujnah, M., Erfurt, D., Rappich, J., Lifei, X., Khaldoun, A., Benyoussef, A., Ennaoui, A. &Taleb, A. (2019). Influence of stress on the photocatalytic properties of sprayed ZnO thin films, Solar Energy Materials and Solar Cells, 201, 110058, DOI: [10.1016/j.solmat.2019.110058], URL: [https://www.sciencedirect.com/science/article/pii/S0927024819303873].

Fan, H. & Jia, X. (2011). Selective detection of acetone and gasoline by temperature modulation in zinc oxide nanosheets sensors. Solid State Ionics, 192(1), 688–692, DOI: [10.1016/j.ssi.2010.05.058], URL: [https://www.sciencedirect.com/science/article/pii/S0167273810003024].

Godse, P.R., Navale, Y.H., Mulik, R.N. & Patil, V.B. (2020), Toxic NO2 Gas Sensing Potentional of Hydrothermally Prepared ZnO Nanorods. In: Pawar P., Ronge B., Balasubramaniam R., Vibhute A., Apte S. (eds) Techno-Societal 2018, DOI: [10.1007/978-3-030-16848-3__89], URL: [https://link.springer.com/chapter/10.1007/978-3-030-16848-3_89].

Han, D. (2020). Sol-gel autocombustion synthesis of zinc oxide foam decorated with holes and its use as acetic acid gas sensor at sub-ppm level, Ceramics International, 46(3), 3304–3310, DOI: [10.1016/j.ceramint.2019.10.036], URL: [https://www.sciencedirect.com/science/article/pii/S0272884219328871].

Hassan, E. S., Mubarak, T. H., Abass, K. H., Chiad, S. S., Habubi, N. F., Rahid, M. H., Khadayeir, A.A., Dawod, M.O. & Al-Baidhany, I. A. (2019). Structural, Morphological and Optical Characterization of Tin Doped Zinc Oxide Thin Film by (SPT), Journal of Physics: Conference Series, 1234(1), DOI: [10.1088/1742-6596/1234/1/012013], URL: [https://iopscience.iop.org/article/10.1088/1742-6596/1234/1/012013/pdf].

Kaneti, Y. V., Zhang, X., Liu, M., Yu, D., Yuan, Y., Aldous, L. & Jiang, X. (2016). Experimental and theoretical studies of gold nanoparticle decorated zinc oxide nanoflakes with exposed {1 0 1¯ 0} facets for butylamine sensing, Sensors and Actuators B: Chemical, 230, 581–591, DOI: [10.1016/j.snb.2016.02.091], URL: [https://www.sciencedirect.com/science/article/pii/S0925400516302404].

Khan, Z.R., Shkir, M., Ganesh, V., AlFaify, S., Yahia, I.S. & Zahran, H.Y. (2018). Linear and Nonlinear Optics of CBD Grown Nanocrystalline F Doped CdS Thin Films for Optoelectronic Applications: An Effect of Thickness, Journal of Electronic Materials, 47, 5386–5395, DOI: 10.1007/s11664-018-6437-9], URL: [https://link.springer.com/article/10.1007%2Fs11664-018-6437-9].

Khatibani, A. B. (2020). Investigation of gas sensing property of zinc oxide thin films deposited by Sol-Gel method: effects of molarity and annealing temperature, Indian Journal of Physics, DOI: [10.1007/s12648-020-01689-4], URL: [https://link.springer.com/article/10.1007/s12648-020-01689-4].

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980, DOI: [10.48550/arXiv.1412.6980], URL: [https://arxiv.org/abs/1412.6980].

Kumar, S., Jeon, H.C., Kang, T.W., Seth, R., Panwar, S., Shinde, S.K., Waghmode, D.P., Saratale, R.G. & Choubey, R.K. (2019a). Variation in chemical bath pH and the corresponding precursor concentration for optimizing the optical, structural and morphological properties of ZnO thin films, Journal of Materials Science: Materials in Electronics, 30, 17747–17758, DOI: [10.1007/s10854-019-02125-y], URL: [https://link.springer.com/article/10.1007/s10854-019-02125-y].

Kumar, V., Gupta, R., Ram, J., Singh, P., Kumar, V., Sharma, S. K., Katiyar, R.S. & Kumar, R. (2019b). High energy 120 MeV Ti9+ ion beam induced modifications in optical, structural and surface morphological properties of titanium dioxide thin films, Vacuum, 166, 323 – 334, DOI: [10.1016/j.vacuum.2018.10.029], URL: [https://www.sciencedirect.com/science/article/abs/pii/S0042207X18312193].

Li, X. B., Ma, S. Y., Li, F. M., Chen, Y., Zhang, Q. Q., Yang, X. H., Wang, C.Y. & Zhu, J. (2013). Porous spheres-like ZnO nanostructure as sensitive gas sensors for acetone detection. Materials Letters, 100, 119–123, DOI: [10.1016/j.matlet.2013.02.117], URL: [https://www.sciencedirect.com/science/article/pii/S0167577X13003170].

Liu, Y. (2019). Controlled Modification of Generated (Style) GAN Latent Vectors, URL: [https://pdfs.semanticscholar.org/6af8/6e7d68f18b61af4ed18deecaef9de2e0ff85.pdf].

Lorwongtragool, P., Boonyopakorn, N. &Kladsomboon, S. (2019). Optical Gas Sensor based on Al-doped ZnO/ZnTPP hybrid thin film, Journal of Physics: Conference Series, 1259(1) 1-8, DOI: [10.1088/1742-6596/1259/1/012014], URL: [https://iopscience.iop.org/article/10.1088/1742-6596/1259/1/012014/pdf].

Mandelbrot, B. B. (1983). The fractal geometry of nature, ISBN-13: 978-0-7167-1186-5, ISBN-10: 0-7167-1186-9, W. H. Freeman & Co., New York.

Marotti, R. (2004). Bandgap energy tuning of electrochemically grown ZnO thin films by thickness and electrodeposition potential, Solar Energy Materials and Solar Cells, 82(1-2), 85–103. DOI: [10.1016/j.solmat.2004.01.008], URL: [https://www.sciencedirect.com/science/article/pii/S0927024804000091].

Mendonça, T., Ferreira, P. M., Marques, J. S., Marcal, A. R. S. &Rozeira, J. (2013). PH2 - A dermoscopic image database for research and benchmarking, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), DOI: [10.1109/embc.2013.6610779], URL: [ieeexplore.ieee.org/document/6610779].

Piegari, A., &Masetti, E. (1985). Thin film thickness measurement: A comparison of various techniques, Thin Solid Films, 124(3-4), 249–257, DOI: [10.1016/0040-6090(85)90273-1], URL: [https://www.sciencedirect.com/science/article/pii/0040609085902731].

Rebollar Rivera, Z., Maldonado Alvarez, A. & Olvera Amador, M.L. (2019). Effect of thickness on photocatalytic properties of zno thin films deposited by RF magnetron sputtering. In 2019 16th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 1-6, URL: [https://cce.cinvestav.mx/images/archivos/papers-19/CCE_2019_paper_72.pdf].

SaralaDevi, G., Bala Subrahmanyam, V., Gadkari, S. C. & Gupta, S. K. (2006). NH3 gas sensing properties of nanocrystalline ZnO based thick films, Analytica Chimica Acta, 568(1-2), 41–46. DOI: [10.1016/j.aca.2006.02.040], URL: [https://www.sciencedirect.com/science/article/pii/S0003267006004314].

Shkir, M., Khan, M. T. &AlFaify, S. (2019). Novel Nd-doping effect on structural, morphological, optical, and electrical properties of facilely fabricated PbI2 thin films applicable to optoelectronic devices, Applied Nanoscience, 9, 1417–1426, DOI: [10.1007/s13204-019-00983-w], URL: [https://link.springer.com/article/10.1007/s13204-019-00983-w].

Szpilrajn, E. (1930). Sur l'extension de l'ordrepartiel, Fundamenta Mathematicae, 16(1), 386-389, URL: [http://eudml.org/doc/212499].

Thirumoorthi, M. & Thomas Joseph Prakash, J. (2019). Doping effects on physical properties of (1 0 1) oriented tin zinc oxide thin films prepared by nebulizer spray pyrolysis method, Materials Science and Engineering: B, 248, 114402, DOI: [10.1016/j.mseb.2019.114402], URL: [https://www.sciencedirect.com/science/article/pii/S0921510719302053].

Vetelino, J. &Reghu, A. (2011). Chapter 2: Electrochemical sensors, In: Vetelino, J. &Reghu, A. (eds.), Introduction to sensors, ISBN: 978-1-4398-0852-8, CRC Press, Taylor & Francis Group.

Wang, Z. L. (2004). Nanostructures of zinc oxide. Materials today, 7(6), 26-33, DOI: [https://www.sciencedirect.com/science/article/pii/S136970210400286X], URL: [10.1016/S1369-7021(04)00286-X].

Wei, G. & Tang, J. (2008). Study of Minimum Box-Counting Method for image fractal dimension estimation, 2008 China International Conference on Electricity Distribution, DOI: [10.1109/ciced.2008.5211829], URL: [https://ieeexplore.ieee.org/document/5211829].

Wen, L., Sahu, B.B., Kim, H.R. & Han, J.G. (2019). Study on the electrical, optical, structural, and morphological properties of highly transparent and conductive AZO thin films prepared near room temperature, Applied Surface Science, 473, 649-656, DOI: [10.1016/j.apsusc.2018.11.250], URL: [https://www.sciencedirect.com/science/article/abs/pii/S0169433218333282?casa_token=GA0flqiame4AAAAA:ELoUVr-HiCjIxU6d_k1c71Fn1FXM-XxjNnDfbyu60kjEWS-BCMaUzk60o7GCK6ziDd2wNpF22Jby].

Yuan, H., Aljneibi, S. A. A. A., Yuan, J., Wang, Y., Liu, H., Fang, J., Tang, C., Yan, X., Cai, H., Gu,Y., Pennycook, S. J., Tao, J. & Zhao, D. (2019). ZnO Nanosheets Abundant in Oxygen Vacancies Derived from Metal-Organic Frameworks for ppb-Level Gas Sensing, Advanced Materials, 1807161, DOI: [10.1002/adma.201807161], URL: [https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201807161].

Zhang, R., Stanley, K.G., Fuller, D. & Bell, S. (2019b). Differentiating Population Spatial Behavior using Representative Features of Geospatial Mobility (ReFGeM), ACM Transactions on Spatial Algorithms and Systems, 1(1), DOI: [10.1145/3362063], URL: [https://arxiv.org/pdf/2002.08168.pdf].

Zhang, Y.D., Chen, X.Q., Zhan, T.M., Jiao, Z.Q., Sun, Y., Chen, Z.M., Yao, Y., Fang, L.T., Lv, Y.D. & Wang, S.H. (2016). Fractal dimension estimation for developing pathological brain detection system based on Minkowski-Bouligand method, IEEE Access, 4, 5937-5947 DOI: [10.1109/ACCESS.2016.2611530], URL: [https://ieeexplore.ieee.org/document/7572925].

Zubair, N. & Akhtar, K. (2019). High performance room temperature gas sensor based on novel morphology of zinc oxide nanostructures, Transactions of Nonferrous Metals Society of China, 29(1), 143–156, DOI: [10.1016/s1003-6326(18)64923-4], URL: [https://www.sciencedirect.com/science/article/pii/S1003632618649234].

Publicado
2022-08-31
Cómo citar
Molina-Ruiz, H. D., Pérez Cortez, O., Gómez Pozos, H., & Castillejos Fernández, H. (2022). La dimensión fractal como parte de un modelo computacional para predecir el espesor de películas delgadas de ZnO . Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10(Especial3), 40-47. https://doi.org/10.29057/icbi.v10iEspecial3.8940
Tipo de manuscrito
Artículos de investigación

Artículos más leídos del mismo autor/a