Películas de almidón de papa (Solanum tuberosum L.), empaques innovadores para alimentos: una revisión

Palabras clave: Almidón, Películas, Biopolímeros, Empaques, Seguridad alimentaria

Resumen

El incremento poblacional de los próximos años, causará el aumento de empaques plásticos no biodegradables destinados a la protección de alimentos, lo que dificultará garantizar la seguridad alimentaria, sin afectar el ambiente. Dentro de los bioplásticos, el uso de películas hechas a partir de almidón, tiene potencial para sustituir gradualmente a los empaques tradicionales; sin embargo, su uso en los alimentos es limitado aún debido a sus propiedades funcionales débiles. A nivel industrial, se ha buscado generar películas de almidón a partir de los residuos de biomasa agrícola, con el fin de disminuir el impacto ambiental, generando una economía circular. Por ello, esta revisión recopila las investigaciones de los últimos cinco años que buscan mejorar las propiedades funcionales de las películas de almidón de papa, para obtener empaques capaces de extender la vida de anaquel de los alimentos y garanticen la seguridad alimentaria con precursores sostenibles a través de una economía circular.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abdan, K. B., Yong, S. C., Chiang, E. C. W., Talib, R. A., Hui, T. C., & Hao, L. C. (2020). Barrier properties, antimicrobial and antifungal activities of chitin and chitosan-based IPNs, gels, blends, composites, and nanocomposites. In Handbook of Chitin and Chitosan: Volume 2: Composites and Nanocomposites from Chitin and Chitosan, Manufacturing and Characterisations (Vol. 2, pp. 175–227). Elsevier. https://doi.org/10.1016/B978-0-12-817968-0.00006-8

Alizadeh-Sani, M., Mohammadian, E., Rhim, J. W., & Jafari, S. M. (2020). pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. In Trends in Food Science and Technology (Vol. 105, pp. 93–144). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2020.08.014

Ayquipa-Cuellar, E., Salcedo-Sucasaca, L., Azamar-Barrios, J. A., & Chaquilla-Quilca, G. (2021). Assessment of Prickly Pear Peel Mucilage and Potato Husk Starch for Edible Films Production for Food Packaging Industries. Waste and Biomass Valorization, 12(1), 321–331. https://doi.org/10.1007/s12649-020-00981-y

Barbosa-Cánovas, G. v, Board, A., Hartel, R. W., & Mccarthy, M. (2014). Food Engineering Series Series Editor (eBook). Springer. http://www.springer.com/series/5996

Bhargava, N., Sharanagat, V. S., Mor, R. S., & Kumar, K. (2020). Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: A review. Trends in Food Science & Technology, 105, 385–401. https://doi.org/10.1016/J.TIFS.2020.09.015

Blackburn, K., & Green, D. (2021). The potential effects of microplastics on human health: What is known and what is unknown. Ambio, 51(3), 518–530. https://doi.org/10.1007/s13280-021-01589-9

Brigham, C. (2018). Biopolymers: Biodegradable Alternatives to Traditional Plastics. Green Chemistry: An Inclusive Approach, 753–770. https://doi.org/10.1016/B978-0-12-809270-5.00027-3

Cecchi, T., & de Carolis, C. (2021). Biobased Products from Food Sector Waste. https://doi.org/https://doi.org/10.1007/978-3-030-63436-0

Chen, Y., Awasthi, A. K., Wei, F., Tan, Q., & Li, J. (2021). Single-use plastics: Production, usage, disposal, and adverse impacts. Science of the Total Environment, 752. https://doi.org/10.1016/j.scitotenv.2020.141772

Cruz-Gálvez, A. M., Castro-Rosas, J., Rodríguez-Marín, M. L., Cadena-Ramírez, A., Tellez-Jurado, A., Tovar-Jiménez, X., Chavez-Urbiola, E. A., Abreu-Corona, A., & Gómez-Aldapa, C. A. (2018a). Antimicrobial activity and physicochemical characterization of a potato starch-based film containing acetonic and methanolic extracts of Hibiscus sabdariffa for use in sausage. LWT, 93, 300–305. https://doi.org/10.1016/j.lwt.2018.02.064

Cruz-Gálvez, A. M., Castro-Rosas, J., Rodríguez-Marín, M. L., Cadena-Ramírez, A., Tellez-Jurado, A., Tovar-Jiménez, X., Chavez-Urbiola, E. A., Abreu-Corona, A., & Gómez-Aldapa, C. A. (2018b). Antimicrobial activity and physicochemical characterization of a potato starch-based film containing acetonic and methanolic extracts of Hibiscus sabdariffa for use in sausage. LWT, 93, 300–305. https://doi.org/10.1016/j.lwt.2018.02.064

de Pilli, T., Baiano, A., Lopriore, G., Russo, C., Giulio, ·, & Cappelletti, M. (2021). SPRINGER BRIEFS IN MOLECULAR SCIENCE CHEMISTRY OF FOODS Sustainable Innovations in Food Packaging (In S. i. M. Science). http://www.springer.com/series/11853

Dinkel, F., Pohl, C., Ros, M., & Waldeck, B. (1996). Ökobilanz stärkehaltiger Kunststoffe (Nr. 271) (Vol. 2). Bundesamt für Umwelt, Wald und Landschaft (BUWAL).

Domene-López, D., Delgado-Marín, J. J., Martin-Gullon, I., García-Quesada, J. C., & Montalbán, M. G. (2019). Comparative study on properties of starch films obtained from potato, corn and wheat using 1-ethyl-3-methylimidazolium acetate as plasticizer. International Journal of Biological Macromolecules, 135, 845–854. https://doi.org/10.1016/j.ijbiomac.2019.06.004

Farajpour, R., Emam Djomeh, Z., Moeini, S., Tavahkolipour, H., & Safayan, S. (2020). Structural and physico-mechanical properties of potato starch-olive oil edible films reinforced with zein nanoparticles. International Journal of Biological Macromolecules, 149, 941–950. https://doi.org/10.1016/j.ijbiomac.2020.01.175

Fetner, H., & Miller, S. A. (2021). Environmental payback periods of reusable alternatives to single-use plastic kitchenware products. International Journal of Life Cycle Assessment, 26(8), 1521–1537. https://doi.org/10.1007/s11367-021-01946-6

Flores, P. (2020). The issue of plastic use during the Covid-19 pandemic. South Sustainability, 1(2), e016–e016. https://doi.org/10.21142/ss-0102-2020-016

Fonseca, L. M., Henkes, A. K., Bruni, G. P., Viana, L. A. N., de Moura, C. M., Flores, W. H., & Galio, A. F. (2018). Fabrication and Characterization of Native and Oxidized Potato Starch Biodegradable Films. Food Biophysics, 13(2), 163–174. https://doi.org/10.1007/s11483-018-9522-y

Gautam, N., Garg, S., & Yadav, S. (2021). Underutilized finger millet crop for starch extraction, characterization, and utilization in the development of flexible thin film. Journal of Food Science and Technology, 58(11), 4411–4419. https://doi.org/10.1007/s13197-020-04926-0

Goel, V., Luthra, P., Gurpreet, ·, Kapur, S., & Ramakumar, · S S v. (2021). Biodegradable/Bio-plastics: Myths and Realities. 29, 3079–3104. https://doi.org/10.1007/s10924-021-02099-1

Gómez-Aldapa, C. A., Díaz-Cruz, C. A., Castro-Rosas, J., Jiménez-Regalado, E. J., Velazquez, G., Gutierrez, M. C., & Aguirre-Loredo, R. Y. (2021). Development of Antimicrobial Biodegradable Films Based on Corn Starch with Aqueous Extract of Hibiscus sabdariffa L. Starch/Staerke, 73(1–2). https://doi.org/10.1002/star.202000096

Gómez-Aldapa, C. A., Velazquez, G., Gutierrez, M. C., Castro-Rosas, J., Jiménez-Regalado, E. J., & Aguirre-Loredo, R. Y. (2020). Characterization of Functional Properties of Biodegradable Films Based on Starches from Different Botanical Sources. Starch/Staerke, 72(11–12). https://doi.org/10.1002/star.201900282

Gómez-Aldapa, C. A., Velazquez, G., Gutierrez, M. C., Rangel-Vargas, E., Castro-Rosas, J., & Aguirre-Loredo, R. Y. (2020). Effect of polyvinyl alcohol on the physicochemical properties of biodegradable starch films. Materials Chemistry and Physics, 239. https://doi.org/10.1016/j.matchemphys.2019.122027

Gonçalves, I., Lopes, J., Barra, A., Hernández, D., Nunes, C., Kapusniak, K., Kapusniak, J., Evtyugin, D. v., Lopes da Silva, J. A., Ferreira, P., & Coimbra, M. A. (2020). Tailoring the surface properties and flexibility of starch-based films using oil and waxes recovered from potato chips byproducts. International Journal of Biological Macromolecules, 163, 251–259. https://doi.org/10.1016/j.ijbiomac.2020.06.231

Gooch, J. W. (2011). Mechanical Properties. In J. W. Gooch (Ed.), Encyclopedic Dictionary of Polymers (p. 448). Springer New York. https://doi.org/10.1007/978-1-4419-6247-8_7254

Hilmi, N. A., & Zanuri, A. Z. (2019). ScienceDirect Physico-chemical properties of biodegradable films of polyvinyl alcohol/sago starch for food packaging. www.sciencedirect.com

Jafarzadeh, S., Jafari, S. M., Salehabadi, A., Nafchi, A. M., Uthaya Kumar, U. S., & Khalil, H. P. S. A. (2020). Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends in Food Science and Technology, 100, 262–277. https://doi.org/10.1016/j.tifs.2020.04.017

Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Edible and Biodegradable Starch Films: A Review. In Food and Bioprocess Technology (Vol. 5, Issue 6, pp. 2058–2076). https://doi.org/10.1007/s11947-012-0835-4

Kabir, E., Kaur, R., Lee, J., Kim, K. H., & Kwon, E. E. (2020a). Prospects of biopolymer technology as an alternative option for non-degradable plastics and sustainable management of plastic wastes. In Journal of Cleaner Production (Vol. 258). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2020.120536

Kabir, E., Kaur, R., Lee, J., Kim, K. H., & Kwon, E. E. (2020b). Prospects of biopolymer technology as an alternative option for non-degradable plastics and sustainable management of plastic wastes. In Journal of Cleaner Production (Vol. 258). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2020.120536

Khalil, H. P. S. A., Banerjee, A., Saurabh, C. K., Tye, Y. Y., Suriani, A. B., Mohamed, & A., Karim, A. A., Rizal, S., & Paridah, & M. T. (n.d.). Biodegradable Films for Fruits and Vegetables Packaging Application: Preparation and Properties. https://doi.org/10.1007/s12393-018-9180-3

Kim, S., & Dale, B. E. (2005). Life cycle assessment study of biopolymers (Polyhydroxyalkanoates) derived from no-tilled corn. International Journal of Life Cycle Assessment, 10(3), 200–210. https://doi.org/10.1065/lca2004.08.171

Kumar, A., Singh, P., Gupta, V., & Prakash, B. (2020). Application of nanotechnology to boost the functional and preservative properties of essential oils. In Functional and Preservative Properties of Phytochemicals (pp. 241–267). Elsevier. https://doi.org/10.1016/b978-0-12-818593-3.00008-7

Kumar, P. (2018). Role of Plastics on Human Health. The Indian Journal of Pediatrics 2018 85:5, 85(5), 384–389. https://doi.org/10.1007/S12098-017-2595-7

Kumar, P., Mahajan, P., Kaur, R., & Gautam, S. (2020). Nanotechnology and its challenges in the food sector: a review. Materials Today Chemistry, 17, 100332. https://doi.org/10.1016/J.MTCHEM.2020.100332

Liu, L., Yang, M., Xu, J., Fan, X., Gao, W., Wang, Q., Wang, P., Xu, B., Yuan, J., Yu, Y., Wang, M., & Yuan, Y. (2020a). Exploring the role of pullulan in the process of potato starch film formation. Carbohydrate Polymers, 234. https://doi.org/10.1016/j.carbpol.2020.115910

Liu, L., Yang, M., Xu, J., Fan, X., Gao, W., Wang, Q., Wang, P., Xu, B., Yuan, J., Yu, Y., Wang, M., & Yuan, Y. (2020b). Exploring the role of pullulan in the process of potato starch film formation. Carbohydrate Polymers, 234. https://doi.org/10.1016/j.carbpol.2020.115910

Liu, W., Wang, Z., Liu, J., Dai, B., Hu, S., Hong, R., Xie, H., Li, Z., Chen, Y., & Zeng, G. (2020). Preparation, reinforcement and properties of thermoplastic starch film by film blowing. Food Hydrocolloids, 108. https://doi.org/10.1016/j.foodhyd.2020.106006

López-Córdoba, A., Estevez-Areco, S., & Goyanes, S. (2019). Potato starch-based biocomposites with enhanced thermal, mechanical and barrier properties comprising water-resistant electrospun poly (vinyl alcohol) fibers and yerba mate extract. Carbohydrate Polymers, 215, 377–387. https://doi.org/10.1016/j.carbpol.2019.03.105

Madival, S., Auras, R., Singh, S. P., & Narayan, R. (2009). Assessment of the environmental profile of PLA, PET and PS clamshell containers using LCA methodology. Journal of Cleaner Production, 17(13), 1183–1194. https://doi.org/10.1016/j.jclepro.2009.03.015

Menzel, C. (2020). Improvement of starch films for food packaging through a three-principle approach: Antioxidants, cross-linking and reinforcement. Carbohydrate Polymers, 250(1168828), 1–7. https://doi.org/10.1016/j.carbpol.2020.116828

Merino, D., Paul, U. C., & Athanassiou, A. (2021). Bio-based plastic films prepared from potato peels using mild acid hydrolysis followed by plasticization with a polyglycerol. Food Packaging and Shelf Life, 29, 100707. https://doi.org/10.1016/J.FPSL.2021.100707

Mohammadi Nafchi, A., Moradpour, M., Saeidi, M., & Alias, A. K. (2013). Thermoplastic starches: Properties, challenges, and prospects. Starch - Stärke, 65(1–2), 61–72. https://doi.org/https://doi.org/10.1002/star.201200201

Mujeeb Rahman, P., Abdul Mujeeb, V. M., Muraleedharan, K., & Thomas, S. K. (2018). Chitosan/nano ZnO composite films: Enhanced mechanical, antimicrobial and dielectric properties. Arabian Journal of Chemistry, 11(1), 120–127. https://doi.org/10.1016/j.arabjc.2016.09.008

Murrieta-Martínez, C. L., Soto-Valdez, H., Pacheco-Aguilar, R., Torres-Arreola, W., Rodríguez-Felix, F., & Márquez Ríos, E. (2018). Edible protein films: Sources and behavior. In Packaging Technology and Science (Vol. 31, Issue 3, pp. 113–122). John Wiley and Sons Ltd. https://doi.org/10.1002/pts.2360

Nanda, S., Patra, B. R., Patel, R., Bakos, J., & Dalai, A. K. (2022). Innovations in applications and prospects of bioplastics and biopolymers: a review. Environmental Chemistry Letters, 20(1), 379–395. https://doi.org/10.1007/s10311-021-01334-4

Nandi, S., & Guha, P. (2018a). Modelling the effect of guar gum on physical, optical, barrier and mechanical properties of potato starch based composite film. Carbohydrate Polymers, 200, 498–507. https://doi.org/10.1016/j.carbpol.2018.08.028

Nandi, S., & Guha, P. (2018b). Modelling the effect of guar gum on physical, optical, barrier and mechanical properties of potato starch based composite film. Carbohydrate Polymers, 200, 498–507. https://doi.org/10.1016/j.carbpol.2018.08.028

Oliveira, G., Gonçalves, I., Barra, A., Nunes, C., Ferreira, P., & Coimbra, M. A. (2020). Coffee silverskin and starch-rich potato washing slurries as raw materials for elastic, antioxidant, and UV-protective biobased films. Food Research International, 138. https://doi.org/10.1016/j.foodres.2020.109733

Olsson, E., Hedenqvist, M. S., Johansson, C., & Järnström, L. (2013). Influence of citric acid and curing on moisture sorption, diffusion and permeability of starch films. Carbohydrate Polymers, 94(2), 765–772. https://doi.org/10.1016/J.CARBPOL.2013.02.006

Parreidt, T. S., Lindner, M., Rothkopf, I., Schmid, M., & Müller, K. (2019). The development of a uniform alginate-based coating for cantaloupe and strawberries and the characterization of water barrier properties. Foods, 8(203), 1–21. https://doi.org/10.3390/foods8060203

Pellicer, E., Nikolic, D., Sort, J., Baró, M. D., Zivic, F., Grujovic, N., Grujic, R., & Pelemis, S. (2017). Advances in applications of industrial biomaterials. In Advances in Applications of Industrial Biomaterials. Springer International Publishing. https://doi.org/10.1007/978-3-319-62767-0

Piñeros-Hernandez, D., Medina-Jaramillo, C., López-Córdoba, A., & Goyanes, S. (2017). Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocolloids, 63, 488–495. https://doi.org/10.1016/j.foodhyd.2016.09.034

Poonia, A., & Dhewa, T. (2022). Edible Food Packaging. In A. Poonia & T. Dhewa (Eds.), Edible Food Packaging (eBook). Springer Singapore. https://doi.org/10.1007/978-981-16-2383-7

Ramos, S. G. (2021). Tecnologías para el desarrollo de biopolímeros, como una alternativa en la sustitución del plástico (PET). Alimentos Ciencia e Ingeniería, 28(1), 89–95.

Rendón-Villalobos, J. R., Solorza-Feria, J., Rodríguez-González, F., & Flores-Huicochea, E. (2017). Barrier properties improvement using additives. In Food Packaging (pp. 465–495). Elsevier. https://doi.org/10.1016/b978-0-12-804302-8.00014-5

Ribeiro, A. M., Estevinho, B. N., & Rocha, F. (2021). Preparation and Incorporation of Functional Ingredients in Edible Films and Coatings. Food and Bioprocess Technology, 14(2), 209–231. https://doi.org/10.1007/s11947-020-02528-4

Runnels, C. M., Lanier, K. A., Williams, J. K., Bowman, J. C., Petrov, A. S., Hud, N. v, & Williams, L. D. (2018). Folding, Assembly, and Persistence: The Essential Nature and Origins of Biopolymers. Journal of Molecular Evolution, 86(9), 598–610. https://doi.org/10.1007/s00239-018-9876-2

Sani, I. K., Geshlaghi, S. P., Pirsa, S., & Asdagh, A. (2021). Composite film based on potato starch/apple peel pectin/ZrO2 nanoparticles/ microencapsulated Zataria multiflora essential oil; investigation of physicochemical properties and use in quail meat packaging. Food Hydrocolloids, 117. https://doi.org/10.1016/j.foodhyd.2021.106719

Tan, J., Tiwari, S. K., & Ramakrishna, S. (2021). Single-Use Plastics in the Food Services Industry: Can It Be Sustainable? Materials Circular Economy 2021 3:1, 3(1), 1–16. https://doi.org/10.1007/S42824-021-00019-1

Tan, W., Cui, D., & Xi, B. (2021). Moving policy and regulation forward for single-use plastic alternatives. Frontiers of Environmental Science & Engineering 2021 15:3, 15(3), 1–4. https://doi.org/10.1007/S11783-021-1423-5

Tecchio, P., Freni, P., de Benedetti, B., & Fenouillot, F. (2016). Ex-ante Life Cycle Assessment approach developed for a case study on bio-based polybutylene succinate. Journal of Cleaner Production, 112, 316–325. https://doi.org/10.1016/j.jclepro.2015.07.090

Vaclavik, V. A., & Christian, E. W. (2014). Food Science Text Series Essentials of Food Science. http://www.springer.com/series/5999

Valdés, A., Mellinas, A. C., Ramos, M., Garrigós, M. C., & Jiménez, A. (2014). Natural additives and agricultural wastes in biopolymer formulations for food packaging. In Frontiers in Chemistry (Vol. 2, Issue FEB). Frontiers Media S. A. https://doi.org/10.3389/fchem.2014.00006

Valero-Valdivieso, M. F., Ortegón, Y., & Uscategui, Y. (2013). Biopolymers: progress and prospects. DYNA: Revista de La Facultad de Minas, 80(181), 171–180.

Wang, R., Liu, P., Cui, B., Kang, X., & Yu, B. (2019). Effects of different treatment methods on properties of potato starch-lauric acid complex and potato starch-based films. International Journal of Biological Macromolecules, 124, 34–40. https://doi.org/10.1016/j.ijbiomac.2018.11.207

Wang, R., Liu, P., Cui, B., Kang, X., Yu, B., Qiu, L., & Sun, C. (2020). Effects of pullulanase debranching on the properties of potato starch-lauric acid complex and potato starch-based film. International Journal of Biological Macromolecules, 156, 1330–1336. https://doi.org/10.1016/j.ijbiomac.2019.11.173

Wesolowski, R. A., Wesolowski, A. P., & Petrova, R. S. (2020). The World of Materials. In The World of Materials. Springer International Publishing. https://doi.org/10.1007/978-3-030-17847-5

Wu, H., Lei, Y., Lu, J., Zhu, R., Xiao, D., Jiao, C., Xia, R., Zhang, Z., Shen, G., Liu, Y., Li, S., & Li, M. (2019). Effect of citric acid induced crosslinking on the structure and properties of potato starch/chitosan composite films. Food Hydrocolloids, 97. https://doi.org/10.1016/j.foodhyd.2019.105208

Xin, S., Xiao, L., Dong, X., Li, X., Wang, Y., Hu, X., Sameen, D. E., Qin, W., & Zhu, B. (2020). Preparation of chitosan/curcumin nanoparticles based zein and potato starch composite films for Schizothorax prenati fillet preservation. International Journal of Biological Macromolecules, 164, 211–221. https://doi.org/10.1016/j.ijbiomac.2020.07.082

Yang, M., Shi, J., & Xia, Y. (2018). Effect of SiO2, PVA and glycerol concentrations on chemical and mechanical properties of alginate-based films. International Journal of Biological Macromolecules, 107, 2686–2694. https://doi.org/10.1016/j.ijbiomac.2017.10.162

Yuan, L., Feng, W., Zhang, Z., Peng, Y., Xiao, Y., & Chen, J. (2021). Effect of potato starch-based antibacterial composite films with thyme oil microemulsion or microcapsule on shelf life of chilled meat. LWT, 139. https://doi.org/10.1016/j.lwt.2020.110462

Zhang, R., Wang, X., & Cheng, M. (2018). Preparation and characterization of potato starch film with various size of Nano-SiO2. Polymers, 10(10). https://doi.org/10.3390/POLYM10101172

Publicado
2022-07-05
Cómo citar
Lara-Gómez, A. B., Aguirre-Loredo, R. Y., Castro-Rosas, J., Rangel-Vargas, E., Hernández-Juárez, M., & Gómez-Aldapa, C. A. (2022). Películas de almidón de papa (Solanum tuberosum L.), empaques innovadores para alimentos: una revisión. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10(19), 11-22. https://doi.org/10.29057/icbi.v10i19.8965

Artículos más leídos del mismo autor/a