Curiosidades e implicaciones tecnológicas de la hidroxiapatita sintética

Palabras clave: hueso, hidroxiapatita, mineral, compuesto

Resumen

La hidroxiapatita sintética es el principal componente inorgánico del hueso. Su composición química, biocompatibilidad y capacidad de dopaje la hacen uno de los materiales más investigados por la comunidad científica. Por tal razón, sus aplicaciones comienzan como material de relleno óseo hasta su uso sinérgico en terapias contra el cáncer. La presente revisión va dirigida a un público no especializado, así como a expertos en el área de materiales con un propósito divulgativo sobre sus generalidades, síntesis, aplicaciones y novedades.

Descargas

La descarga de datos todavía no está disponible.

Citas

Anvari, A. (2018). Characterization of Implantation’s Biomaterials Based on the Patient and Doctor Expectations. Research in Medical & Engineering Sciences, 4(2). https://doi.org/10.31031/rmes.2018.04.000583

Brazdis, R. I., Fierascu, I., Avramescu, S. M., & Fierascu, R. C. (2021). Recent progress in the application of hydroxyapatite for the adsorption of heavy metals from water matrices. In Materials (Vol. 14, Issue 22). MDPI. https://doi.org/10.3390/ma14226898

Ciobanu, C. S., Iconaru, S. L., Popa, C. L., Motelica-Heino, M., & Predoi, D. (2015). Evaluation of Samarium Doped Hydroxyapatite, Ceramics for Medical Application: Antimicrobial Activity. Journal of Nanomaterials, 2015. https://doi.org/10.1155/2015/849216

Eliaz, N., & Metoki, N. (2017). Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications. Materials, 10(4). https://doi.org/10.3390/ma10040334

Fyhrie, D. P. (2010). The Mechanical Properties of Bone. In Osteoporosis in Men (pp. 51–67). Elsevier Inc. https://doi.org/10.1016/B978-0-12-374602-3.00005-5

Iconaru, S. L., Groza, A., Gaiaschi, S., Rokosz, K., Raaen, S., Ciobanu, S. C., Chapon, P., & Predoi, D. (2020). Antimicrobial properties of samarium doped hydroxyapatite suspensions and coatings. Coatings, 10(11), 1–18. https://doi.org/10.3390/coatings10111124

Indrani, D. J., Soegijono, B., Adi, W. A., & Trout, N. (2017). Phase composition and crystallinity of hydroxyapatite with various heat treatment temperatures. International Journal of Applied Pharmaceutics, 9(Special Issue 2), 87–91. https://doi.org/10.22159/ijap.2017.v9s2.21

Kowalyszyn, K., Silva, A., & Torres, Q. (2013). La Hidroxiapatita Como Biomaterial Para La Reconstrucción De Rebordes Alveolares. Revista de Venezuela Investigacion Odontológica IADR, 1(1), 62–71. http://erevistas.saber.ula.ve/index.php/rvio/article/view/4446/4242

Lara-Ochoa, S., Ortega-Lara, W., & Guerrero-Beltrán, C. E. (2021). Hydroxyapatite nanoparticles in drug delivery: Physicochemistry and applications. In Pharmaceutics (Vol. 13, Issue 10). MDPI. https://doi.org/10.3390/pharmaceutics13101642

Le, H. R., Chen, K. Y., & Wang, C. A. (2012). Effect of pH and temperature on the morphology and phases of co-precipitated hydroxyapatite. Journal of Sol-Gel Science and Technology, 61(3), 592–599. https://doi.org/10.1007/s10971-011-2665-7

Lee, S. W., Hahn, B. D., Kang, T. Y., Lee, M. J., Choi, J. Y., Kim, M. K., & Kim, S. G. (2014). Hydroxyapatite and collagen combination-coated dental implants display better bone formation in the peri-implant area than the same combination plus bone morphogenetic protein-2-coated implants, hydroxyapatite only coated implants, and uncoated implants. Journal of Oral and Maxillofacial Surgery, 72(1), 53–60. https://doi.org/10.1016/j.joms.2013.08.031

Li, M., Xiong, P., Yan, F., Li, S., Ren, C., Yin, Z., Li, A., Li, H., Ji, X., Zheng, Y., & Cheng, Y. (2018). An overview of graphene-based hydroxyapatite composites for orthopedic applications. Bioactive Materials, 3(1), 1–18. https://doi.org/10.1016/j.bioactmat.2018.01.001

Mendoza-Anaya, D., Flores-Díaz, E., Mondragón-Galicia, G., Fernández-García, M. E., Salinas-Rodríguez, E., Karthik, T. V. K., & Rodríguez-Lugo, V. (2018). The role of Eu on the thermoluminescence induced by gamma radiation in nano hydroxyapatite. Journal of Materials Science: Materials in Electronics, 29(18), 15579–15586. https://doi.org/10.1007/s10854-018-9147-4

Mohd Pu’ad, N. A. S., Koshy, P., Abdullah, H. Z., Idris, M. I., & Lee, T. C. (2019). Syntheses of hydroxyapatite from natural sources. Heliyon, 5(5), e01588. https://doi.org/10.1016/j.heliyon.2019.e01588

Morais, D. S., Coelho, J., Ferraz, M. P., Gomes, P. S., Fernandes, M. H., Hussain, N. S., Santos, J. D., & Lopes, M. A. (2014). Samarium doped glass-reinforced hydroxyapatite with enhanced osteoblastic performance and antibacterial properties for bone tissue regeneration. Journal of Materials Chemistry B, 2(35), 5872–5881. https://doi.org/10.1039/c4tb00484a

Ngo, T.-D. (2020). Introduction to Composite Materials (1st ed., Vol. 1). Intech Open. www.intechopen.com

Park, J. Y., Park, S. H., Kim, M. G., Park, S. H., Yoo, T. H., & Kim, M. S. (2018). Biomimetic scaffolds for bone tissue engineering. In Advances in Experimental Medicine and Biology (Vol. 1064, pp. 109–121).

Springer New York LLC. https://doi.org/10.1007/978-981-13-0445-3_7

Predoi, D., Iconaru, S. L., Deniaud, A., Chevallet, M., Michaud-Soret, I., Buton, N., & Prodan, A. M. (2017). Textural, structural and biological evaluation of hydroxyapatite doped with zinc at low concentrations. Materials, 10(3). https://doi.org/10.3390/ma10030229

Rodríguez-Lugo, V., Salado-Leza, D. E., López Ortiz, S., Mendoza-Anaya, D., Villaseñor-Cerón, L. S., & Reyes-Valderrama, M. I. (2020). Revisión de la Hidroxiapatita Nanoestructurada como Alternativa para Tratamiento de Cáncer. Pädi Boletín Científico de Ciencias Básicas e Ingenierías Del ICBI, 8(Especial), 115–127. https://doi.org/10.29057/icbi.v8iespecial.6466

Rodríguez-Lugo, V., Salinas-Rodríguez, E., Vázquez, R. A., Alemán, K., & Rivera, A. L. (2017). Hydroxyapatite synthesis from a starfish and β-tricalcium phosphate using a hydrothermal method. RSC Advances, 7(13), 7631–7639. https://doi.org/10.1039/c6ra26907a

Sánchez-Campos, D., Mendoza-Anaya, D., Reyes-Valderrama, M. I., Esteban-Gómez, S., & Rodríguez-Lugo, V. (2020). Cationic surfactant at high pH in microwave HAp synthesis. Materials Letters, 265(3), 3–6. https://doi.org/10.1016/j.matlet.2020.127416

Sang, R., Chen, M., Yang, Y., Li, Y., Shi, J., Deng, Y., Chen, X., & Yang, W. (2019). HAp@GO drug delivery vehicle with dual-stimuli-triggered drug release property and efficient synergistic therapy function against cancer. Journal of Biomedical Materials Research, 107(10), 2296–2309. https://doi.org/10.1002/jbm.a.36738

Sari, M., Hening, P., Chotimah, Ana, I. D., & Yusuf, Y. (2021). Bioceramic hydroxyapatite-based scaffold with a porous structure using honeycomb as a natural polymeric Porogen for bone tissue engineering. Biomaterials Research, 25(1). https://doi.org/10.1186/s40824-021-00203-z

Sasano, Y., Nakamura, M., Henmi, A., Okata, H., Suzuki, O., Kayaba, A., & Mayanagi, M. (2019). Degradation of extracellular matrices propagates calcification during development and healing in bones and teeth. In Journal of Oral Biosciences (Vol. 61, Issue 3, pp. 149–156). Japanese Association for Oral Biology. https://doi.org/10.1016/j.job.2019.07.004

Seyfoori, A., Naghib, S. M., & Molaabasi, F. (2020). Inhibitory effect comparison of the needle, spherical, and mesoporous hydroxyapatite nanoparticles on MCF-7 breast cancer cell line proliferation: An in vitro assay. Advances in Nanochemistry, 11, 11–14. https://doi.org/10.22126/anc.2020.4865.1020

Sossa, P. A. F., Giraldo, B. S., Garcia, B. C. G., Parra, E. R., & Arango, P. J. A. (2018). Comparative study between natural and synthetic hydroxyapatite: Structural, morphological and bioactivity properties. Revista Materia, 23(4). https://doi.org/10.1590/s1517-707620180004.0551

Xu, S., Xu, H., Wang, W., Li, S., Li, H., Li, T., Zhang, W., Yu, X., & Liu, L. (2019). The role of collagen in cancer: From bench to bedside. In Journal of Translational Medicine (Vol. 17, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s12967-019-2058-1

Yang, G., & Park, S. J. (2019). Conventional and microwave hydrothermal synthesis and application of functional materials: A review. In Materials (Vol. 12, Issue 7). MDPI AG. https://doi.org/10.3390/ma12071177

Publicado
2022-07-05
Cómo citar
Sánchez-Campos, D., Salado-Leza, D., Pérez-López, J. E., Rodríguez-Lugo, V., & Mendoza-Anaya, D. (2022). Curiosidades e implicaciones tecnológicas de la hidroxiapatita sintética. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10(19), 50-54. https://doi.org/10.29057/icbi.v10i19.9231

Artículos más leídos del mismo autor/a

1 2 3 > >>