Modelado por deposición fundida de polipropileno isotáctico reforzado con nanotubos de titanio (TiNTs).
Resumen
En este trabajo se evaluó el rendimiento de refuerzo de nanotubos de Titania en una matriz de polipropileno isotáctico (iPP). Este refuerzo se añadió al 1,0 y 1,5% en peso en la matriz de polipropileno. Para verificar la formación de la estructura tubular, se realizó un análisis FT-IR, mostrando la presencia de las bandas 912 y 647 cm−1 que corresponden a la región de frecuencia del esqueleto del nanotubo de Titania. Se fabricó un filamento de los nanocompositos para la impresión de probetas mediante FDM con ayuda de una impresora Ender 3 Pro. Las propiedades termo-mecánicas se caracterizaron mediante análisis mecánico dinámico (DMA) donde, para los compositos 1,0 y 1,5% en peso. El módulo de almacenamiento (E') fue superior en comparación con el iPP puro, mostrando una mejoría del (40% y 60%) respectivamente.
Descargas
Citas
Bashir, M. A. (2021). Use of Dynamic Mechanical Analysis (DMA) for Characterizing Interfacial Interactions in Filled Polymers. Solids, 2(1), 108–120. https://doi.org/10.3390/solids2010006
Bertolino, M., Battegazzore, D., Arrigo, R., & Frache, A. (2021). Designing 3D printable polypropylene: Material and process optimization through rheology. Additive Manufacturing, 40(October 2020), 101944. https://doi.org/10.1016/j.addma.2021.101944
Brostow, W., Lobland, H. E. H., & Narkis, M. (2011). The concept of materials brittleness and its applications. Polymer Bulletin, 67(8), 1697–1707. https://doi.org/10.1007/s00289-011-0573-1
Carneiro, O. S., Silva, A. F., & Gomes, R. (2015). Fused deposition modeling with polypropylene. Materials and Design, 83, 768–776. https://doi.org/10.1016/j.matdes.2015.06.053
Cheng, S., Lau, K. tak, Liu, T., Zhao, Y., Lam, P. M., & Yin, Y. (2009). Mechanical and thermal properties of chicken feather fiber/PLA green composites. Composites Part B: Engineering, 40(7), 650–654. https://doi.org/10.1016/j.compositesb.2009.04.011
Gonzalez-Calderon, J. A., Fierro-Gonzalez, J. C., Peña-Juarez, M. G., Perez, E., & Almendarez-Camarillo, A. (2022). Influence of the chemical functionalization of titanium oxide nanotubes on the non-isothermal crystallization of polypropylene nanocomposites. Journal of Materials Science, 57(10), 5855–5872. https://doi.org/10.1007/s10853-022-07009-x
Gonzalez-Calderon, J. A., Vallejo-Montesinos, J., Mata-Padilla, J. M., Pérez, E., & Almendarez-Camarillo, A. (2015). An effective method for the synthesis of pimelic acid/TiO2 nanoparticles with a high capacity to nucleate β-crystals in isotactic polypropylene nanocomposites. Journal of Materials Science, 50(24), 7998–8006. https://doi.org/10.1007/s10853-015-9365-6
Hertle, S., Drexler, M., & Drummer, D. (2016). Additive Manufacturing of Poly ( propylene ) using Melt Extrusion. 1–12. https://doi.org/10.1002/mame.201600259
Jin, M., Neuber, C., & Schmidt, H. (2020). Tailoring polypropylene for extrusion-based additive manufacturing. Additive Manufacturing, 33(January), 101101. https://doi.org/10.1016/j.addma.2020.101101
Morgan, D. L. (2010). Alkaline Hydrothermal Treatment of Titanate. Queensland University of Technology, August, 172.
Muniyappan, S., Solaiyammal, T., Sudhakar, K., Karthigeyan, A., & Murugakoothan, P. (2017). Conventional hydrothermal synthesis of titanate nanotubes: Systematic discussions on structural, optical, thermal and morphological properties. Modern Electronic Materials, 3(4), 174–178. https://doi.org/10.1016/j.moem.2017.10.002
Spoerk, M., Arbeiter, F., Raguž, I., Weingrill, G., Fischinger, T., Traxler, G., Schuschnigg, S., Cardon, L., & Holzer, C. (2018). Polypropylene Filled With Glass Spheres in Extrusion-Based Additive Manufacturing: Effect of Filler Size and Printing Chamber Temperature. Macromolecular Materials and Engineering, 303(7). https://doi.org/10.1002/mame.201800179
Spoerk, M., Holzer, C., & Gonzalez-Gutierrez, J. (2020). Material extrusion-based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage. Journal of Applied Polymer Science, 137(12), 1–16. https://doi.org/10.1002/app.48545
Stribeck, N. (2014). Functionalization of multi-walled carbon nanotubes ( MWCNTs ) with pimelic acid molecules : effect of linkage on b -crystal formation in isotactic polypropylene ( iPP ) matrix. https://doi.org/10.1007/s10853-014-8706-1
Tajvidi, M., Falk, R. H., & Hermanson, J. C. (2006). Effect of natural fibers on thermal and mechanical properties of natural fiber polypropylene composites studied by dynamic mechanical analysis. Journal of Applied Polymer Science, 101(6), 4341–4349. https://doi.org/10.1002/app.24289
Tian, X., Todoroki, A., Liu, T., Wu, L., Hou, Z., Ueda, M., Hirano, Y., Matsuzaki, R., Mizukami, K., Iizuka, K., Malakhov, A. v., Polilov, A. N., Li, D., & Lu, B. (2022). 3D Printing of Continuous Fiber Reinforced Polymer Composites: Development, Application, and Prospective. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 100016. https://doi.org/10.1016/j.cjmeam.2022.100016
Vidakis, N., Petousis, M., Velidakis, E., Tzounis, L., Mountakis, N., Kechagias, J., & Grammatikos, S. (2021). Optimization of the Filler Concentration on Fused Filament Fabrication 3D Printed Polypropylene with Titanium Dioxide Nanocomposites. Materials, 14(11), 3076. https://doi.org/10.3390/ma14113076
Wang, L., & Gardner, D. J. (2017). Effect of fused layer modeling (FLM) processing parameters on the impact strength of cellular polypropylene. Polymer, 113, 74–80. https://doi.org/10.1016/j.polymer.2017.02.055
Wang, L., Sanders, J. E., Gardner, D. J., & Han, Y. (2018). Effect of fused deposition modeling process parameters on the mechanical properties of a filled polypropylene. Progress in Additive Manufacturing, 3(4), 205–214. https://doi.org/10.1007/s40964-018-0053-3