Evaluación de la concentración de zinc en zeolita-A4 para la síntesis de nanopartículas de ZnO

Palabras clave: Zeolita A4, Intercambio Iónico, Zn

Resumen

Las zeolitas han demostrado tener una gran cantidad de aplicaciones tecnológicas, especialmente en la formación de nanoestructuras en su interior. En este trabajo se evalúa la concentración de Zn en una zeolita A4 para la formación de nanopartículas, mediante el intercambio iónico, controlando los parámetros de temperatura. Se realizo análisis de XRD y FT-IR para comprobar que la estructura de la zeolita no se alterara y por medio de UV-vis y SEM-EDS se analizó cuál de las concentraciones será la más adecuada. Tomando como criterio el óptimo intercambio iónico y la estabilidad de la zeolita A4.

Descargas

La descarga de datos todavía no está disponible.

Citas

Adebajo, M. O. (2007). Green chemistry perspectives of methane conversion via oxidative methylation of aromatics over zeolite catalysts. Green Chemistry, 9(6), 526–553. https://doi.org/10.1039/b614281h

Amooaghaie, R., Norouzi, M. & Saeri, M. (2017). Impact of zinc and zinc oxide nanoparticles on the physiological and biochemical processes in tomato and wheat. Botany, 95(5), 441–455. https://doi.org/10.1139/cjb-2016-0194

Breck, D. W., Eversole, W. G. & Milton, R. M. (1956). New synthetic crystalline zeolites. In Journal of the American Chemical Society (Vol. 78, Issue 10, pp. 2338–2339). American Chemical Society. https://doi.org/10.1021/ja01591a082

Brouwer, D. H., Brouwer, C. C., Mesa, S., Semelhago, C. A., Steckley, E. E., Sun, M. P. Y., Mikolajewski, J. G. & Baerlocher, C. (2020). Solid-state 29Si NMR spectra of pure silica zeolites for the International Zeolite Association Database of Zeolite Structures. Microporous and Mesoporous Materials, 297, 110000. https://doi.org/10.1016/j.micromeso.2020.110000

Cerri, G., Farina, M., Brundu, A., Gavini, E., Salis, A. & Dathe, W. (2021). Antibacterial activity of Zn-loaded Cuban zeolite against Helicobacter pylori in comparison to its Na-loaded and unmodified counterparts. Environmental Geochemistry and Health, 43(5), 2037–2048. https://doi.org/10.1007/s10653-020-00781-2

Dapurkar, S. E., Badamali, S. K. & Selvam, P. (2001). Nanosized metal oxides in the mesopores of MCM-41 and MCM-48 silicates. Catalysis Today, 68(1–3), 63–68. https://doi.org/10.1016/S0920-5861(01)00323-6

Eroglu, N., Emekci, M. & Athanassiou, C. G. (2017). Applications of natural zeolites on agriculture and food production. In Journal of the Science of Food and Agriculture (Vol. 97, Issue 11, pp. 3487–3499). John Wiley & Sons, Ltd. https://doi.org/10.1002/jsfa.8312

Flores-Valenzuela, J., Cortez-Valadez, M., Ramírez-Bon, R., Arizpe-Chavez, H., Román-Zamorano, J. F. & Flores-Acosta, M. (2015). Optical and vibrational properties of PbSe nanoparticles synthesized in clinoptilolite. Physica E: Low-Dimensional Systems and Nanostructures, 72, 1–6. https://doi.org/10.1016/j.physe.2015.04.012

He, M., Liu, T. Z., Qiu, M. H., Zhang, Z. H., Zhu, Y. Z., Song, Z. & Xiu, J. L. (2015). Study on the optical properties of ErBa3B9O18crystals. Physica B: Condensed Matter, 456, 100–102. https://doi.org/10.1016/j.physb.2014.08.037

Hedström, A. (2001). Ion Exchange of Ammonium in Zeolites: A Literature Review. Journal of Environmental Engineering, 127(8), 673–681. https://doi.org/10.1061/(asce)0733-9372(2001)127:8(673)

Ismail, A. A., El-Midany, A., Abdel-Aal, E. A. & El-Shall, H. (2005). Application of statistical design to optimize the preparation of ZnO nanoparticles via hydrothermal technique. Materials Letters, 59(14–15), 1924–1928. https://doi.org/10.1016/j.matlet.2005.02.027

Król, M. (2020). Natural vs. Synthetic zeolites. In Crystals (Vol. 10, Issue 7, pp. 1–8). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/cryst10070622

Leal-Perez, J. E., Flores-Valenzuela, J., Cortez-Valadez, M., Hurtado-Macías, A., Vargas-Ortiz, R. A., Bocarando-Chacon, J. G. & Almaral-Sánchez, J. L. (2022). Optical properties of copper clusters in zeolite 4A with surface enhanced Raman spectroscopy applications. Applied Physics A, 128(8), 649. https://doi.org/10.1007/s00339-022-05785-6

Lee, S., Jeong, S., Kim, D., Hwang, S., Jeon, M. & Moon, J. (2008). ZnO nanoparticles with controlled shapes and sizes prepared using a simple polyol synthesis. Superlattices and Microstructures, 43(4), 330–339. https://doi.org/10.1016/j.spmi.2008.01.004

Lin, R. B., Chen, D., Lin, Y. Y., Zhang, J. P. & Chen, X. M. (2012). A zeolite-like zinc triazolate framework with high gas adsorption and separation performance. Inorganic Chemistry, 51(18), 9950–9955. https://doi.org/10.1021/ic301463z

Melo, C. R., Riella, H. G., Kuhnen, N. C., Angioletto, E., Melo, A. R., Bernardin, A. M., Da Rocha, M. R. & Da Silva, L. (2012). Synthesis of 4A zeolites from kaolin for obtaining 5A zeolites through ionic exchange for adsorption of arsenic. In Materials Science and Engineering B: Solid-State Materials for Advanced Technology (Vol. 177, Issue 4, pp. 345–349). Elsevier. https://doi.org/10.1016/j.mseb.2012.01.015

Millar, G. J., Winnett, A., Thompson, T. & Couperthwaite, S. J. (2016). Equilibrium studies of ammonium exchange with Australian natural zeolites. Journal of Water Process Engineering, 9, 47–57. https://doi.org/10.1016/j.jwpe.2015.11.008

Mozgawa, W., Król, M. & Barczyk, K. (2011). FT-IR studies of zeolites from different structural groups. Chemik, 65(7), 671–674.

Mumpton, F. (1978). Natural zeolites: a new industrial mineral commodity. Natural Zeolites: Occurence, Properties, Use., 3–27.

Sanatgar-Delshade, E., Habibi-Yangjeh, A. & Khodadadi-Moghaddam, M. (2011). Hydrothermal low-temperature preparation and characterization of ZnO nanoparticles supported on natural zeolite as a highly efficient photocatalyst. Monatshefte Fur Chemie, 142(2), 119–129. https://doi.org/10.1007/s00706-010-0441-y

Santhoshkumar, J., Kumar, S. V. & Rajeshkumar, S. (2017). Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies, 3(4), 459–465. https://doi.org/10.1016/j.reffit.2017.05.001

Şen, S., Bardakçi, B., Yavuz, A. G. & Gök, A. U. (2008). Polyfuran/zeolite LTA composites and adsorption properties. European Polymer Journal, 44(8), 2708–2717. https://doi.org/10.1016/j.eurpolymj.2008.05.018

Singh, S. C. & Gopal, R. (2007). Zinc nanoparticles in solution by laser ablation technique. Bulletin of Materials Science, 30(3), 291–293. https://doi.org/10.1007/s12034-007-0048-z

Wen, J., Dong, H. & Zeng, G. (2018). Application of zeolite in removing salinity/sodicity from wastewater: A review of mechanisms, challenges and opportunities. In Journal of Cleaner Production (Vol. 197, pp. 1435–1446). Elsevier. https://doi.org/10.1016/j.jclepro.2018.06.270

Williams, D. B. & Carter, C. B. (1996). The Transmission Electron Microscope. In Transmission Electron Microscopy (pp. 3–17). Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2519-3_1

Xu, J., Zheng, A., Wang, X., Qi, G., Su, J., Du, J., Gan, Z., Wu, J., Wang, W. & Deng, F. (2012). Room temperature activation of methane over Zn modified H-ZSM-5 zeolites: Insight from solid-state NMR and theoretical calculations. Chemical Science, 3(10), 2932–2940. https://doi.org/10.1039/c2sc20434g

Yan, M., Luo, S. D., Schaffer, G. B. & Qian, M. (2012). TEM and XRD characterisation of commercially pure α-Ti made by powder metallurgy and casting. Materials Letters, 72, 64–67. https://doi.org/10.1016/j.matlet.2011.12.072

Publicado
2022-12-12
Cómo citar
Ruiz, G. A., Leal-Perez, J. E., Almaral-Sanchez, J. L., Cota-Ruiz, M., Cabrera-Covarrubias , F. G., & Flores-Valenzuela, J. (2022). Evaluación de la concentración de zinc en zeolita-A4 para la síntesis de nanopartículas de ZnO. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10(Especial7), 56-59. https://doi.org/10.29057/icbi.v10iEspecial7.9825