Evaluación de nano secado por aspersión a alta concentración de alimentación
Resumen
El secado por aspersión es una técnica utilizada en el área químico-biológica para encapsular sustancias disueltas con un material protector, mediante la aspersión por aire caliente, para reducir el contenido de humedad (%H) y la actividad de agua (Aw). El nano secado por aspersión (NSA) emplea a una baja condición de productividad, con alimentaciones ≤1% en contenido de sólidos, a fin de obtener tamaños submicrométricos del polvo. En el presente trabajo, se evaluó una alimentación al 25% p/v de sólidos de maltodextrina (MD) de diez equivalentes de dextrosa (DE10) y 120 °C de temperatura de proceso (TE). El equipo Buchi-B90 presentó la capacidad de procesar la muestra, donde el análisis del polvo mostró un tamaño de partícula de 10-12 μm con morfología arrugada sin aglomeración significativa, %H de 5.49%, Aw de 0.212 y rendimiento de 88.13%. El registro de las condiciones de operación reveló que la velocidad de aspersión no está afectada por la temperatura del cabezal (TC).
Descargas
Citas
Abdullah, M., Iskandar, F., Shibamoto, S., Ogi, T., & Okuyama, K. (2004). Abdullah, M., Iskandar, F., Shibamoto, S., Ogi, T.Preparation of oxide particles with ordered macropores by colloidal templating and spray pyrolysis. Acta Materialia, 52(17), 5151–5156, https://doi:10.1016/j.actamat.2004.07.021.
Akbarbaglu, Z., Peighambardoust, S. H., Sarabandi, K., & Jafari, S. M. (2021). Spray drying encapsulation of bioactive compounds within protein-based carriers; different options and applications. Food Chemestry, 359, 129965, https://doi:10.1016/j.foodchem.2021.12996.
Anwar, S. H., & Kunz, B. (2011). The influence of drying methods on the stabilization of fish oil microcapsules: Comparison of spray granulation, spray drying, and freeze drying. Journal of Food Engineering, 367-378.
Arpagaus, C. (2012). A novel laboratory- Scale spray dryer to produce nanoparticles. Dryinng technology, 1113-1121, https://doi.org/10.1080/07373937.2012.686949.
Both, E., Boom, R., & Schutyser, M. (2020). Particle morphology and powder properties during spray drying of maltodextrin and whey protein mixtures. Powder Technology, 519-524. doi.org/10.1016/j.powtec.2020.01.001.
Bürki, K., Jeon, I., Aspergaus, C., & Betz, G. (2011). New insights into respirable protein powder preparation using a nano spray dryer. International Journal of Pharmaceutics, 408(1-2), 248–256, https://doi:10.1016/j.ijpharm.2011.02.012.
Chopde, S., Datir, R., Deshmukh, G., Dhotre, A., & Patil, M. (2020). Nanoparticle formation by nanospray drying & its application innanoencapsulation of food bioactive ingredients. Journal of agriculture and food reserch, 2, 100085, https://doi.org/10.1016/j.jafr.2020.100085.
Díaz-Montes, E., Vargas-León, E. A., Garrido-Hernández, A., & Ceron-Montes, G. I. (2021). Simulación de la transferencia de calor en el contenedor de alimentación del secador por aspersión y su control de temperatura. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI, https://doi.org/10.29057/icbi.v9iEspecial2.7947.
E.M.Both, A.M.Karlina, R.M.Boom, & M.A.I.Schutyser. (2018). Morphology development during sessile single droplet drying of mixed maltodextrin and whey protein solutions. Food Hydrocolloids, 202-210, https://doi.org/10.1016/j.foodhyd.2017.08.022.
Gabas, A. L., Telis-Romero, J., Giraldo-Gómez, G. I., & Nicoletti-Telis, V. R. (2009). Propiedades termodinámicas de sorción de agua de la pulpa de lulo en polvo con encapsulantes. Ciencias e Tecolígia de alimentos, 29(4), 911–918, https://doi:10.1590/s0101-206120090004.
Gautier, S. E., Arpagaus, C., Schafroth, N., Meuri, M., Deschamps, A., & Maquet, V. (2010). Very fine Chitosan microparticles with narrow & controlled size distribution using spray-drying technologies. Drug Delivery Technology, 30-37.
Hoskin, R. T., Xiong, J., Esposito, D. A., & Lila., M. A. (2019). Blueberry polyphenol-protein food ingredients: The impact of spray drying on the in vitro antioxidant activity, anti-inflammatory markers, glucose metabolism and fibroblast migration. Química de alimentos, 187-194.
Jati, I. R., Darmoatmodjo, L. M., Suseno, T. I., Ristiarini, S., & Wibowo, C. (2022). Effect of Processing on Bioactive Compounds, Antioxidant Activity, Physicochemical, and Sensory Properties of Orange Sweet Potato, Red Rice, and Their Application for Flake Products. Plants, 11(3), 440, https://doi.org/10.3390/plants11030440.
Karaca, A. C., Nickerson, M., & Low, N. H. (2013). Microcapsule production employing chickpea or lentil protein isolatesand maltodextrin: Physicochemical properties and oxidative protection of encapsulated flaxseed oil. Food Chemistry, 448–457, https://doi:10.1016/j.foodchem.2013.01.040.
Klinkesorn, U., Sophanodora, P., Chinachoti, P., Decker, E. A., & McClements, J. (2006). Characterization of spray-dried tuna oil emulsified in two-layered interfacial membranes prepared using electrostatic layer-by-layer deposition. Food Research International, 449–457, https://doi:10.1016/j.foodres.2005.09.008.
Laokuldilok, T., & Kanha, N. (2015). Effects of processing conditions on powder properties of black glutinous rice (Oryza sativa L.) bran anthocyanins produced by spray drying and freeze drying. LWT - Ciencia y tecnología de los alimentos, 405-411.
Li, X., Anton, N., Aspergaus, C., Belleteix, F., & Vandamme, T. F. (2010). Nanoparticles by spray drying using innovative new technology: The Büchi Nano Spray Dryer B-90. Journal of Controlled Release, 304-310, https://doi:10.1016/j.jconrel.2010.07.113.
Marciniak, A., Suwal, S., Naderi, N., Pouliot, Y., & Doyen, A. (2018). Enhancing enzymatic hydrolysis of food proteins and- production of bioactive peptides using high hydrostatic pressure technology. Trends in Food Science & Technology, https://doi:10.1016/j.tifs.2018.08.013.
Mondragón, R., Julia, J. E., Barra, A., & Jarque, J. C. (2013). El proceso de secado por atomización: formación de gránulos y cinética de secado de gotas. Boletín de la Sociedad Española de Cerámica y Vidrio, 159-168. https://doi:10.3989/cyv.212013.
Negrao-Murakami, A. N., Nunes, G. L., Pinto, S. S., Murakami, F. S., Amante, E. R., Petrus, J. C., . . . Amboni, R. D. (2016). Influence of DE-value of maltodextrin on the physicochemical properties, antioxidant activity, and storage stability of spray dried concentrated mate (Ilex paraguariensis A. St. Hil.). LWT - Food Science and Technology, 1-7.
PadmaIshwarya, S., & Anandharamakrishnan, C. (2021). 3.36 - Nanospray Drying: Principle and Food Processing Applications. Tecnologías innovadoras de procesamiento de alimentos, 605-633.
Rezvani, M., Hesari, J., Peighambardoust, S. H., Manconi, M., Hamishehkar, H., & Escribano-Ferrer, E. (2019). Potential application of nanovesicles (niosomes and liposomes) for fortification of functional beverages with Isoleucine-Proline-Proline: A comparative study with central composite design approach. Food chemistry, https://doi.org/10.1016/j.foodchem.2019.05.015.
Rosa, J. R., Nunes, G. L., Motta, M. H., Fortes, J. P., Weis, G. C., Hecktheuer, L. H., . . . Rosa, C. S. (2018, Noviembre 25). Microencapsulation of anthocyanin compounds extracted from blueberry (Vaccinium spp.) by spray drying: characterization, stability and simulated gastrointestinal conditions. Food Hydrocolloids, 1-33.
Schafroth, N., Arpagaus, C., Jadhav, U. Y., Makne, S., & Douroumis, D. (2012). Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process. Colloids and Surfaces B: Biointerfaces, 8-15, https://doi:10.1016/j.colsurfb.2011.09.038.
Schmid, K., Arpagaus, C., & Friess, W. (2009n). Evaluation of a Vibrating Mesh Spray Dryer for Preparation of Submicron Particles. Respiratory Drug Delivery Europe , 323-226.
Schmid, K., Arpagaus, C., & Friess, W. (2011). Evaluation of the Nano Spray Dryer B-90 for pharmaceutical applications. Pharmaceutical development and technology, 16(4), 287–294, https://doi.org/10.3109/10837450.2010.485320.
Vicente, J., Pinto, J., Menezes, J., & Gaspard, F. (2013). Fundamental analysis of particle formation in spray drying. Powder Technology, 1-7, https://doi.org/10.1016/j.powtec.2013.06.038.
Yoplac, I., Vargas, L., Robert, P., & Hidalgo, A. (2021). Yoplac, I., Vargas, L., Robert, P., & Hidalgo, A. (2021). Characterization and antimicrobial activity of microencapsulated citral with dextrin by spray drying. Heliyon, 7(4). e06737, https://doi:10.1016/j.heliyon.2021.e06737.
Zhu, J., Li, :. X., Liu, L., Li, Y., Qi, B., & LianzhouJiang. (2022). Preparation of spray-dried soybean oil body microcapsules using maltodextrin: Effects of dextrose equivalence. LWT, https://doi.org/10.1016/j.lwt.2021.112874.