Comportamiento magnetocalórico en manganitas lantano-estroncio dopadas con cobalto

Palabras clave: Refrigeración magnética, Magnetocalórico, Manganita

Resumen

La refrigeración magnética es una de las tecnologías con mayor potencial comercial, la aplicación de esta tecnología no se ha concretado, debido a la necesidad de disponer materiales magnetocalóricos que trabajen a temperatura ambiente (300 K) y con bajos campos magnéticos (< 2 T). En este trabajo se analizó el efecto de la sustitución de Co3+ en posiciones de Mn3+ de la manganita de lantano-estroncio, La0.3Sr0.7CoxMn1-xO3 con x de 0.05 a 0.2 mol, con el objetivo de disminuir la temperatura de trabajo, manteniendo el valor entropía magnética por encima de 2.5 J/kg·K y la capacidad de refrigeración superior a 80 J/K. Mediante DRX y su análisis por refinamiento Rietveld se confirmaron las fases ortorrómbicas para todas las concentraciones. La magnetometría de muestra vibrante mostró orden ferromagnético a temperatura ambiente y la temperatura de Curie disminuyó hasta 300 K para la concentración de x= 0.15, esto sugiere que el material puede ser un buen candidato para aplicaciones de refrigeración magnética.

Descargas

La descarga de datos todavía no está disponible.

Citas

Afify, M. S., El faham, M. M., Eldemerdash, U., El Rouby, W. M. A., El-Dek, S. I., (2021). Room temperature ferromagnetism in Ag doped LaMnO3 nanoparticles. Journal of alloys and compounds 861, 158570. DOI: 10.1016/j.jallcom.2020.158570

Al-Yahmadi, I. Z., Gismelseed, A. M., Al Ma’Mari, F., Al-Rawas, A. D., Al-Harthi, S. H., Yousif, A. Y., Myint, M. T. Z., (2021). Structural, magnetic and magnetocaloric effect studies of Nd0.6Sr0.4AxMn1-xO3 (A = Co, Ni, Zn) perovskite manganites. Journal of alloys and compounds 875, 169977. DOI: 10.1016/j.jallcom.2021.159977

Benford, S. M., Brown, G. V., (1981). T-S diagram for gadolinium near the Curie temperature. Journal of applied physics 52(3), 2110-2112. DOI: 10.1063/1.329633

Bolarín-Miró, A. M., Sánchez-de Jesús, F., Ponce, A., Martinez, E. E., (2007). Mechanosynthesis of Lanthanum Manganite. Materials science and engineering: A 454-455, 69-74. DOI: 10.1016/j.msea.2006.12.062

Bolarín-Miró, A. M., Taboada-Moreno, C. A., Cortés-Escobedo, C. A., Rosales-González, O., Torres-Villaseñor, G., Sánchez-De Jesús, F., (2020). Effect of high-energy ball milling on magnetocaloric properties of La0.7Ca0.2Sr0.1MnO3. Applied Physics A 126, 369. DOI: 10.1007/s00339-020-03555-w

Chau, N., Niem. P. Q., Nhat, H. N., Luong, N. H., Tho, N. D., (2003). Influence of Cu substitution for Mn on the structure, magnetic, magnetocaloric and magnetoresistance properties of La0.7Sr0.3MnO3 perovskites. Physica B: Condensed matter 327, 214-217. DOI: 10.1016/s0921-4526(02)01731-3

Chen, X. G., Fu, J. B., Yun, C., Zhao, H., Yang, Y. B., Du, H. L., Yang, j. B., (2014). Magnetic and transport properties of cobalt doped La0.7Sr0.3MnO3. Journal of applied physics 116(10), 103907. DOI: 10.1063/1.4894713

Daengsakul, S., Mongkolkachit, C., Thomas, C., Siri, S., Thomas, I., Amornkitbamrung, V., Maensiri, S., (2009). A simple thermal decomposition synthesis, magnetic properties, and cytotoxicity of La0.7Sr0.3MnO3 nanoparticles. Applied physics A 96, 691. DOI: 10.1007/s00339-009-5151-0

Feng, J. W., Ye, C., Hwang, L. P., (2000). Magnetic and magnetotransport properties in the Ni-doped La0.7Sr0.3MnO3 system. Physical review B 61(18), 12271-12276. DOI: 10.1103/physrevb.61.12271

Ghosh, K., Lobb, C. J., Greene, R. L., Karabashev, S. G., Shulyatev, D. A., Arsenov, A. A., Mukovskii, Y., (1998). Critical Phenomena in the Double-Exchange Ferromagnet La0.7Sr0.3MnO3. Physical review letters 81, 4740-4743

DOI: 10.1103/physrevlett.81.4740

Gschneidner, K. A., Pecharsky V. K., (1999). Magnetic refrigeration materials (invited). Journal of applied physics 85(8), 5365-5368. DOI:10.1063/1.369979

Jonker, G. H., Van Santen, J. H., (1950). Ferromagnetic compounds of manganese with perovskite structure. Physica 16, 337-349. DOI: 10.1016/0031-8914(50)90033-4

Olarte, J. A., (2011). Efectos de las tensiones en manganitas de LaMn1-xCoxO3 (0 ≤ x ≤ 0.5). Visión electrónica 6(1), 4752.

Phuc, N. X., Bau, L. V., Khiem, N. V., Son, L. H., Nam, D. N. H., (2003). Magnetic and transport properties of La0.7Sr0.3Co1-yMnyO3 no double exchange between Mn and Co. Physica B: Condensed matter 327(2-4), 177-182. DOI: 10.1016/s0921-4526(02)01721-0

Taboada-Moreno, C. A., Sanchez-De Jesús, F., Pedro-García, F., Cortés-Escobedo, C. A., Betancourt-Cantera, J. A., Ramírez-Cardona, M., Bolarín-Miró, A. M., (2020). Large magnetocaloric effect near to room temperature in Sr2+ doped La0.7Ca0.3MnO3. Journal of Magnetism and Magnetic Materials 496, 165887. DOI: 10.1016/j.jmmm.2019.165887

Yang, J. B., Kim, M. S., Creel, T. F., Zhao, H., Chen, X. G., Yelon, W. B., James, W. J., (2016). Structural, magnetic and transport properties of B-site substituted perovskite La0.7Sr0.3MnO3. Perovskite materials-synthesis, characterization, properties and applications. DOI: 10.5772/61770

Zhao, B. C., Song, W. H., Ma, Y. Q., Zhang, R. L., Yang, J., Sheng, Z. G., Sun, Y. P., (2005). Magnetic and transport properties of the Co-doped manganite La0.7Sr0.3Mn1-xCoxO3 (0 ≤ x ≤ 0.5). Physica status solid (b) 242(8), 1719-1727. DOI: 10.1002/pssb.200440052

Publicado
2022-12-12
Cómo citar
González-García, I., Sánchez-De Jesús, F., Rosales-González , O., Cortés-Escobedo , C. A., & Bolarín-Miró, A. M. (2022). Comportamiento magnetocalórico en manganitas lantano-estroncio dopadas con cobalto. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10(Especial7), 109-112. https://doi.org/10.29057/icbi.v10iEspecial7.9932

Artículos más leídos del mismo autor/a