Arcillas caoliníferas: elaboración de geopolímeros con arena de caolín

Palabras clave: Caolín, arena de caolín, metacaolín, caolinita, geopolímeros

Resumen

En el siguiente trabajo de investigación se presenta la diferencia que existe entre caolinita, caolín, arena de caolín y metacaolín. Se realizaron estudios a una muestra representativa de arena de caolín, con diferentes técnicas de caracterización, como difracción de rayos X (DRX), fluorescencia de rayos X (FRX) y microscopía electrónica de barrido (MEB). El polvo se calcina a dos temperaturas a 800 y 1000 °C, analizando la cristalografía de cada muestra. Se elabora un geopolímero a partir de metacaolín a diferentes temperaturas, aplicando y sin aplicar presión uniaxial, con el objetivo de valorar su resistencia a la compresión. Los polímeros presentan un promedio de resistencia a la compresión máxima de 112.05 MPa.

Descargas

La descarga de datos todavía no está disponible.

Citas

Awad, M. E., López-Galindo, A., Setti, M., El-Rahmany, M. M., & Iborra, C. V. (2017). Kaolinite in pharmaceutics and biomedicine. International Journal of Pharmaceutics, 533(1), 34–48. https://doi.org/10.1016/j.ijpharm.2017.09.056

Bartolomè, J. F. (1997). El Caolín: composición, estructura, génesis y aplicaciones. Boletin Sociedad Española de Cerámica y Vidrio, 36, 20.

Bustamente García, J. (2012). Anexo I: FICHAS DE CAMPO, CARTA INVENTARIO FÍSICO DE LOS RECURSOS MINERALES, ETZATLÁN, F13-D53, ESCALA 1:50,000, ESTADOS DE JALISCO Y NAYARIT. SERVICIO GEOLÓGICO MEXICANO, 221–230. https://doi.org/10.2307/j.ctv3f8qgp.12

Chakraborty, A. K. (2014). Phase transformation of kaolinite clay. In Phase Transformation of Kaolinite Clay (Vol. 9788132211). https://doi.org/10.1007/978-81-322-1154-9

Chandrasekhar, S. (1996). Influence of metakaolinization the formation of zeolita 4A from kaolin. Clay Minerals, 253–261.

De Noni, A., Hotza, D., Soler, V. C., & Vilches, E. S. (2009). Effect of quartz particle size on the mechanical behaviour of porcelain tile subjected to different cooling rates. Journal of the European Ceramic Society, 29(6), 1039–1046. https://doi.org/10.1016/j.jeurceramsoc.2008.07.052

De Sousa, L. L., Salomão, R., & Arantes, V. L. (2017). Development and characterization of porous moldable refractory structures of the alumina-mullite-quartz system. Ceramics International, 43(1), 1362–1370. https://doi.org/10.1016/j.ceramint.2016.10.093

Dewi, R., Agusnar, H., Alfian, Z., & Tamrin. (2018). Characterization of technical kaolin using XRF, SEM, XRD, FTIR and its potentials as industrial raw materials. Journal of Physics: Conference Series, 1116(4). https://doi.org/10.1088/1742-6596/1116/4/042010

Drits, V. A., Sakharov, B. A., Dorzhieva, O. V., Zviagina, B. B., & Lindgreen, H. (2019). Determination of the phase composition of partially dehydroxylated kaolinites by modelling their X-ray diffraction patterns. Clay Minerals, 54(3), 309–322. https://doi.org/10.1180/clm.2019.39

García-Verduch, A. (1985). Origen y composicion de las arcillas ceramicas. Boletín de La Sociedad Española de Cerámica y Vidrio, 24(6), 395–404.

García Reyes, E. (2004). ANEXO:2 INVENTARIO FÍSICO DE LOS RECURSOS MINERALES DEL MUNICIPIO AGUA BLANCA, HGO. CONSEJO DE RECURSOS MINERALES.

Hernández Pérez, Y. I. (2017). Caracterización mineralógica y geoquímica de caolines del área de Huayacocotla, Veracruz, (México) para uso industrial.

Huang, Y., Hu, S., Gu, Z., & Sun, Y. (2019). Fracture behavior and energy analysis of 3D concrete mesostructure under uniaxial compression. Materials, 12(12). https://doi.org/10.3390/ma12121929

Ibarra-Cruz, L. E., Legorreta-García, F., García-Hernández, A. L., Valdez-Sierra, J., Pérez-González, N., & Díaz-Guzmán, D. (2021). Síntesis de Zeolitas tipo Gismondina empleando desechos urbanos e industriales Synthesis of Gismondina-type Zeolites using urban and industrial waste. Pädi, 9. https://doi.org/https://doi.org/10.29057/icbi.v9iEspecial2.7999

Kuliffayová, M., Krajči, L., Janotka, I., & Šmatko, V. (2012). Thermal behaviour and characterization of cement composites with burnt kaolin sand. Journal of Thermal Analysis and Calorimetry, 108(2), 425–432. https://doi.org/10.1007/s10973-011-1964-0

Liew, Y. M., Kamarudin, H., Mustafa Al Bakri, A. M., Luqman, M., Khairul Nizar, I., Ruzaidi, C. M., & Heah, C. Y. (2012). Processing and characterization of calcined kaolin cement powder. Construction and Building Materials, 30, 794–802. https://doi.org/10.1016/j.conbuildmat.2011.12.079

López-Galindo, A., Viseras, C., & Cerezo, P. (2007). Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Applied Clay Science, 36(1–3), 51–63. https://doi.org/10.1016/j.clay.2006.06.016

Marfil, R., Bustillo, A., & Garcia Palacios, M. (1980). Morfologia y genesis de caolinitas en rocas silicificadas de la provincia de Avila (Espana). Clay Minerals, 15(3), 249–262. https://doi.org/10.1180/claymin.1980.015.3.05

Mitrović, A., & Zdujić, M. (2014). Preparation of pozzolanic addition by mechanical treatment of kaolin clay. International Journal of Mineral Processing, 132(November 2014), 59–66. https://doi.org/10.1016/j.minpro.2014.09.004

Nouri, T., & Masoumi, R. (2020). Geochemical and industrial properties of the Kejal Kaolin deposit, NW Iran. Turkish Journal of Earth Sciences, 29(2), 325–346. https://doi.org/10.3906/yer-1906-7

Ospina Gómez, P. A. (2016). Influencia de la adición o aumento en la cantidad de mullita en la resistencia a la flexión de una pasta de porcelana eléctrica comercial. 156. http://www.bdigital.unal.edu.co/51327/

Saikia, N. J., Bharali, D. J., Sengupta, P., Bordoloi, D., Goswamee, R. L., Saikia, P. C., & Borthakur, P. C. (2003). Characterization, beneficiation and utilization of a kaolinite clay from Assam, India. Applied Clay Science, 24(1–2), 93–103. https://doi.org/10.1016/S0169-1317(03)00151-0

Talabi, A. ., Ademilua, O. ., & Akinola, O. O. (2012). Compositional Features and Industrial Application of Ikere Kaolinite, Southwestern Nigeria. Research Journal in Engineering and Applied Sciences, 1(5), 327–333. www.emergingresource.org

Tian Jun, R., & Jin kai, X. (2002). The catalytic cracking activity of the kaolin-group minerals. Materials Letters, 57(2), 297–301. https://doi.org/10.1016/S0167-577X(02)00781-4

Tironi, A., Trezza, M. A., Scian, A. N., & Irassar, E. F. (2012). Kaolinitic calcined clays: Factors affecting its performance as pozzolans. Construction and Building Materials, 28(1), 276–281. https://doi.org/10.1016/j.conbuildmat.2011.08.064

Torres, J., De Gutiérrez, R. M., Castelló, R., & Vizcayno, C. (2010). Análisis comparativo de caolines de diferentes fuentes para la produccion de metacaolín. Revista Latinoamericana de Metalurgia y Materiales, 31(1), 35–43.

Wang, M. R., Jia, D. C., He, P. G., & Zhou, Y. (2010). Influence of calcination temperature of kaolin on the structure and properties of final geopolymer. Materials Letters, 64(22), 2551–2554. https://doi.org/10.1016/j.matlet.2010.08.007

Yunsheng, Z., Wei, S., & Zongjin, L. (2010). Composition design and microstructural characterization of calcined kaolin-based geopolymer cement. Applied Clay Science, 47(3–4), 271–275. https://doi.org/10.1016/j.clay.2009.11.002

Zhuravlev, V. ., Yu Taranets, N., Koval, A. ., Karpets, M. ., & Naidich, Y. V. (2012). Wetting and Interface Microstructure in the System of Al2O3-SiO2 Based Ceramics/Nb-Containing Melts. The Open Ceramic Science Journal, 2, 8–14. https://doi.org/10.2174/1876395201202010008

Publicado
2022-12-12
Cómo citar
Garcia-Hernandez, A. L., Legorreta-García, F., Valdez-Sierra, J., Ibarra-Cruz, L. E., Pérez-Gonzáles, N. K., & Díaz-Guzmán , D. (2022). Arcillas caoliníferas: elaboración de geopolímeros con arena de caolín. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10(Especial7), 102-108. https://doi.org/10.29057/icbi.v10iEspecial7.9960

Artículos más leídos del mismo autor/a

1 2 > >>