Adaptive controller with exponential constraints for robotic manipulators

Keywords: Exponential Constraint, Lyapunov Function, Adaptative Proportional Derivative Controller

Abstract

A controller is designed to solve the problems associated with the trajectory tracking of a manipulator robot. The structure that contemplates the control is proportional derivative (PD) with the implementation of adaptive gains. A Lyapunov barrier function is used as the law of adaptation of the controller gains. This function considers a logarithmic structure and a variable limit or barrier in time through a decreasing exponential function. The designed barrier imposes an exponential decrease in the following error. The designed control is implemented numerically for a two-degree-of-freedom robotic arm model. Also, to observe the advantages of the designed control, it was compared with a classic PD controller. The adaptive PD has a smaller root mean square error than the classical PD. The designed control is tested with different convergence parameters, and the results show how the imposed barrier causes a preset system velocity.

Downloads

Download data is not yet available.

References

Ballesteros, M., Polyakov, A., Efimov, D., Chairez, I., y Poznyak, A. (2020). Adaptive discontinuous control for homogeneous systems approximated by neural networks. IFAC-PapersOnLine, 53(2):7885–7890.

Ballesteros-Escamilla, M. F., Cruz-Ortiz, D., Chairez, I., y Luviano-Juárez, A. (2019). Adaptive output control of a mobile manipulator hanging from a quadcopter unmanned vehicle. ISA transactions, 94:200–217.

Cruz-Ortiz, D., Chairez, I., y Poznyak, A. (2021). Non-singular terminal sliding-mode control for a manipulator robot using a barrier Lyapunov function. ISA transactions.

Cruz-Ortiz, D., Chairez, I., y Poznyak, A. (2022). Sliding-Mode Control of Full-State Constraint Nonlinear Systems: A Barrier Lyapunov Function Approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems.

Dai, L., Yu, Y., Zhai, D.-H., Huang, T., y Xia, Y. (2020). Robust model predictive tracking control for robot manipulators with disturbances. IEEE Transactions on Industrial Electronics, 68(5):4288–4297.

Guerrero, J., Torres, J., Creuze, V., y Chemori, A. (2020). Adaptive disturbance observer for trajectory tracking control of underwater vehicles. Ocean Engineering, 200:107080.

Guo, J., Li, C., y Guo, S. (2019). Study on autonomous hovering of the spherical underwater robot based on fuzzy pd controller. En 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1601–1606. IEEE.

Hu, Y., Wang, W., Liu, H., y Liu, L. (2019). Reinforcement learning tracking control for robotic manipulator with kernel-based dynamic model. IEEE transactions on neural networks and learning systems, 31(9):3570–3578.

Khalil, H. K. (2015). Nonlinear control, volumen 406. Pearson New York.

Liu, C., Zhao, Z., y Wen, G. (2019). Adaptive neural network control with optimal number of hidden nodes for trajectory tracking of robot manipulators. Neurocomputing, 350:136–145.

Liu, L., Gao, T., Liu, Y.-J., Tong, S., Chen, C. P., y Ma, L. (2021). Time-varying IBLFs-based adaptive control of uncertain nonlinear systems with full state constraints. Automatica, 129:109595.

Santoso, F., Garratt, M. A., y Anavatti, S. G. (2019). Hybrid PD-fuzzy and PD controllers for trajectory tracking of a quadrotor unmanned aerial vehicle: Autopilot designs and real-time flight tests. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(3):1817–1829.

Soukhanov, A. H., editor (1992). The American Heritage. Dictionary of the American Language. Houghton Mifflin Company.

Spong, M. W., Hutchinson, S., y Vidyasagar, M. (2020). Robot modeling and control. John Wiley & Sons. Teng, L., Gull, M. A., y Bai, S. (2020). Pd-based fuzzy sliding mode control of a wheelchair exoskeleton robot. IEEE/ASME Transactions on Mechatronics, 25(5):2546–2555.

Tika, A., Gafur, N., Yfantis, V., y Bajcinca, N. (2020). Optimal scheduling and model predictive control for trajectory planning of cooperative robot manipulators. IFAC-PapersOnLine, 53(2):9080–9086.

Yang, C., Huang, D., He, W., y Cheng, L. (2020). Neural control of robot manipulators with trajectory tracking constraints and input saturation. IEEE Transactions on Neural Networks and Learning Systems, 32(9):4231–4242.

Published
2023-11-30
How to Cite
Gómez-Correa, M., Cruz-Ortiz, D., Salgado-Ramos, I. de J., & Ballesteros-Escamilla, M. F. (2023). Adaptive controller with exponential constraints for robotic manipulators. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 11(Especial4), 130-136. https://doi.org/10.29057/icbi.v11iEspecial4.11408