Effect of temperature on the efficiency of photovoltaic panels Effect of temperature

Keywords: Photovoltaic panel, photoelectric, solar concentrators

Abstract

Cooling the operating surface is a key operational factor to take into account to achieve greater efficiency when operating solar photovoltaic systems. Adequate cooling can improve electrical efficiency and reduce the rate of cell degradation over time, resulting in maximizing the useful life of photovoltaic modules. The excess heat removed by the cooling system can be used in domestic, commercial or industrial applications. This article presents a review of the efficiency behavior of cells made of different materials with respect to temperature, several methods are presented that can be used to minimize the negative impacts of elevated temperature, while attempting to improve the efficiency of the panels. solar photovoltaics that operate above the temperature recommended in the Standard Test Conditions (STC). Different cooling technologies are reviewed, namely: Floating Tracked Concentrated Cooling System (FTCC); Hybrid solar photovoltaic/thermal system cooled by water spray; Hybrid solar photovoltaic/thermal system with PVT/TE cells cooled by heat sink; Hybrid solar photovoltaic/thermal (PV/T) system cooled by forced water circulation; Improving the performance of solar panels through the use of phase change materials (PCM); Solar panel with water immersion cooling technique; Photovoltaic solar panel cooled by transparent coating (photonic crystal cooling); Hybrid solar photovoltaic/thermal system cooled by forced air circulation and Solar panel with thermoelectric cooling. Various research articles are reviewed and classified according to their focus, contribution, and type of technology used to achieve cooling of photovoltaic panels. The discussion of the results has been carried out based on the advantages, disadvantages, areas of application and the techno-economic nature of each technology reviewed.

Downloads

Download data is not yet available.

References

Aghaei, M., Fairbrother, A., Gok, A., Ahmad, S., Kazim, S., Lobato, K., ... & Kettle, J. (2022). Review of degradation and failure phenomena in photovoltaic modules. Renewable and Sustainable Energy Reviews, 159, 112160. https://doi.org/10.1016/j.rser.2022.112160

Al-Shahri, O. A., Ismail, F. B., Hannan, M. A., Lipu, M. H., Al-Shetwi, A. Q., Begum, R. A., & Soujeri, E. (2021). Solar photovoltaic energy optimization methods, challenges and issues: A comprehensive review. Journal of Cleaner Production, 284, 125465. https://doi.org/10.1016/j.jclepro.2020.125465

Bayrak, F., Oztop, H. F., & Selimefendigil, F. (2020). Experimental study for the application of different cooling techniques in photovoltaic (PV) panels. Energy Conversion and Management, 212, 112789. https://doi.org/10.1016/j.enconman.2020.112789

Bonomo, M., Taheri, B., Bonandini, L., Castro-Hermosa, S., Brown, T. M., Zanetti, M., ... & Brunetti, F. (2020). Thermosetting polyurethane resins as low-cost, easily scalable, and effective oxygen and moisture barriers for perovskite solar cells. ACS Applied Materials & Interfaces, 12(49), 54862-54875 https://doi.org/10.1021/acsami.0c17652

Czanderna, A. W., & Pern, F. J. (1996). Encapsulation of PV modules using ethylene vinyl acetate copolymer as a pottant: A critical review. Solar energy materials and solar cells, 43(2), 101-181. https://doi.org/10.1016/0927-0248(95)00150-6

Debije, M. G., & Verbunt, P. P. (2012). Thirty years of luminescent solar concentrator research: solar energy for the built environment. Advanced Energy Materials, 2(1), 12-35. https://doi.org/10.1002/aenm.201100554

Duffie, J. A., & Beckman, W. A. (2013). Solar engineering of thermal processes. John Wiley & Sons.

Dwivedi, P., Sudhakar, K., Soni, A., Solomin, E., & Kirpichnikova, I. (2020). Advanced cooling techniques of PV modules: A state of art. Case studies in thermal engineering, 21, 100674. https://doi.org/10.1016/j.csite.2020.100674

Elminir, H. K., Ghitas, A. E., Hamid, R. H., El-Hussainy, F., Beheary, M. M., & Abdel-Moneim, K. M. (2006). Effect of dust on the transparent cover of solar collectors. Energy conversion and management, 47(18-19), 3192-3203. https://doi.org/10.1016/j.enconman.2006.02.014

García Martínez, R. (2015). Utilización de polímeros de bajo band-gap en células fotovoltaicas. http://hdl.handle.net/10317/4997

Godet, M. & Durance, P. (2011). La prospectiva estratégica para las empresas y los territorios. Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura. Cuadernos de LIPSOR. Fundation Prospective et Innovation. Recuperado en: http://www. laprospective. fr/dyn/francais/actualites/SR10vSpa. pdf

Hadipour, A., Zargarabadi, M. R., & Rashidi, S. (2021). An efficient pulsed-spray water cooling system for photovoltaic panels: Experimental study and cost analysis. Renewable Energy, 164, 867-875. https://doi.org/10.1016/j.renene.2020.09.021

Hassan, A., Wahab, A., Qasim, M. A., Janjua, M. M., Ali, M. A., Ali, H. M., ... & Javaid, N. (2020). Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system. Renewable Energy, 145, 282-293. https://doi.org/10.1016/j.renene.2019.05.130

Hee, W. J., Alghoul, M. A., Bakhtyar, B., Elayeb, O., Shameri, M. A., Alrubaih, M. S., & Sopian, K. (2015). The role of window glazing on daylighting and energy saving in buildings. Renewable and Sustainable Energy Reviews, 42, 323-343. https://doi.org/10.1016/j.rser.2014.09.020

Jiang, H., Yao, L., Lu, N., Qin, J., Liu, T., Liu, Y., & Zhou, C. (2021). Multi-resolution dataset for photovoltaic panel segmentation from satellite and aerial imagery. Earth System Science Data, 13(11), 5389-5401. https://doi.org/10.5194/essd-13-5389-2021

Klampaftis, E., & Richards, B. S. (2011). Improvement in multi‐crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer. Progress in Photovoltaics: Research and Applications, 19(3), 345-351. https://doi.org/10.1002/pip.1019

Ma, T., Li, Z., & Zhao, J. (2019). Photovoltaic panel integrated with phase change materials (PV-PCM): technology overview and materials selection. Renewable and Sustainable Energy Reviews, 116, 109406. https://doi.org/10.1016/j.rser.2019.109406

Maleki, A., Haghighi, A., Assad, M. E. H., Mahariq, I., & Nazari, M. A. (2020). A review on the approaches employed for cooling PV cells. Solar Energy, 209, 170-185. https://doi.org/10.1016/j.solener.2020.08.083

Mazumder, M. K., Horenstein, M. N., Joglekar, N. R., Sayyah, A., Stark, J. W., Bernard, A. A., ... & Lloyd, A. H. (2017). Mitigation of dust impact on solar collectors by water-free cleaning with transparent electrodynamic films: progress and challenges. IEEE Journal of Photovoltaics, 7(5), 1342-1353. doi: 10.1109/JPHOTOV.2017.2721462.

Mustafa, R. J., Gomaa, M. R., Al-Dhaifallah, M., & Rezk, H. (2020). Environmental impacts on the performance of solar photovoltaic systems. Sustainability, 12(2), 608. https://doi.org/10.3390/su12020608

Muteri, V., Cellura, M., Curto, D., Franzitta, V., Longo, S., Mistretta, M., & Parisi, M. L. (2020). Review on life cycle assessment of solar photovoltaic panels. Energies, 13(1), 252. https://doi.org/10.3390/en13010252

Naciones Unidas. (2016). Agenda 2030 y los Objetivos de Desarrollo Sostenible, una oportunidad para América Latina y el Caribe. Santiago: CEPAL.

Santhakumari, M., & Sagar, N. (2019). A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques. Renewable and Sustainable Energy Reviews, 110, 83-100. https://doi.org/10.1016/j.rser.2019.04.024

Sargunanathan, S., Elango, A., & Mohideen, S. T. (2016). Performance enhancement of solar photovoltaic cells using effective cooling methods: A review. Renewable and Sustainable Energy Reviews, 64, 382-393. https://doi.org/10.1016/j.rser.2016.06.024

Sarkın, A. S., Ekren, N., & Sağlam, Ş. (2020). A review of anti-reflection and self-cleaning coatings on photovoltaic panels. Solar Energy, 199, 63-73. https://doi.org/10.1016/j.solener.2020.01.084

Sato, D., & Yamada, N. (2019). Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method. Renewable and Sustainable Energy Reviews, 104, 151-166. https://doi.org/10.1016/j.rser.2018.12.051

Starowicz, A., Rusanowska, P., & Zieliński, M. (2023). Photovoltaic cell–the history of invention–review. Polityka Energetyczna-Energy Policy Journal, 169-180. DOI: 10.33223/epj/161290

Toffler, A. (1973). El shock del futuro. Barcelona: Plaza & Janes

Vieira, R. G., de Araújo, F. M., Dhimish, M., & Guerra, M. I. (2020). A comprehensive review on bypass diode application on photovoltaic modules. Energies, 13(10), 2472. https://doi.org/10.3390/en13102472

Published
2023-12-15
How to Cite
Espinosa-Ramírez, B. H. A., Garrido-Hernández, A., García-Domínguez, G., Vargas-León, E. A., & Castillo-Minjarez, J. M. A. (2023). Effect of temperature on the efficiency of photovoltaic panels Effect of temperature . Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 11(Especial5), 184-190. https://doi.org/10.29057/icbi.v11iEspecial5.11841