Proposal and deflection analysis of lightened slabs with embedded three-dimensional metal arrangement

Keywords: Ferrocement, lightened three-dimensional slab, deflection, finite element analysis

Abstract

In this work the deflection analysis of two types of lightened slabs of 50 mm with embedded three-dimensional metallic structure is presented. Two structure configurations (pyramidal and cubic) of 4 mm diameter grade 6000 steel rods are proposed. In the first stage, the deflection in conventional slabs is evaluated using an analytical method and, subsequently, the deflection in this type of slab is determined using the finite elements method using the ANSYS software. After the validation of the simulations with the software, the same simulations were performed for the slabs with three-dimensional structures. The results obtained show that three-dimensional structures provide more strength before deflection compared to conventional steel reinforcement. Furthermore, it was found that the cubic structure is the most resistant to bending. The possible application of slabs with three-dimensional reinforcement for optimization of materials by reducing the superelevation in housing is discussed.

Downloads

Download data is not yet available.

References

Abdulla, A. I., & Khatab, H. R. (2014). Behavior of Multilayer Composite Ferrocement Slabs with Intermediate Rubberized Cement Mortar Layer. Arabian Journal for Science and Engineering, 39(8), 5929–5941. https://doi.org/10.1007/s13369-014-1171-y

Ahmad, T., Arif, M., & Masood, A. (2014). Experimental Investigations on Ferrocement Roof Slab System for Low Cost Housing. Journal of The Institution of Engineers (India): Series A, 95(1), 9–18. https://doi.org/10.1007/s40030-014-0066-y

American Concrete Institute. (2015). Requisitos de Reglamento para Concreto Estructural: ACI 318S-14.

Arnal, L., & Betancourt, M. (2005). Reglamento de Construcciones para el Distrito Federal (5th ed.). Trillas.

Carrillo, J., & Silva-Páramo, D. (2016). Ensayos a flexión de losas de concreto sobre terreno reforzadas con fibras de acero. Ingeniería, Investigación y Tecnología, 17(3), 317–330. https://doi.org/10.1016/j.riit.2016.07.003

Clarke, R. P. (2010). Study of full-scale elements of a ferrocement roof system for Caribbean application. Construction and Building Materials, 24(3), 221–229. https://doi.org/10.1016/j.conbuildmat.2009.09.003

Do, T. D. D., Yen, K.-J., Yen, C.-H., & Hung, C.-C. (2022). Impact of tension stiffening on the tensile and flexural behavior of ECC ferrocement. Construction and Building Materials, 329, 127201. https://doi.org/10.1016/j.conbuildmat.2022.127201

González-Cuevas, O. M., & Robles-Fernández, F. (2013). Aspectos fundamentales del concreto reforzado (4th ed.). Limusa.

Greepala, V., & Nimityongskul, P. (2009). Influence of Heating Envelope on Structural Fire Integrity of Ferrocement Jackets. Fire Technology, 45(4), 385–404. https://doi.org/10.1007/s10694-008-0056-6

Guerra-García, L. M., Da Costa-Baêta, F., Ferreira-Tinôco, I. da F., Osorio-Saraz, J. A., & Osorio-Hernández, R. (2013). Evaluación del comportamiento mecánico de tres clases de placas tipo sándwich de ferrocemento para la construcción en vivienda rural. DYNA, 80(181), 210–218.

Li, J., Wu, C., Hao, H., Su, Y., & Li, Z.-X. (2017). A study of concrete slabs with steel wire mesh reinforcement under close-in explosive loads. International Journal of Impact Engineering, 110, 242–254. https://doi.org/10.1016/j.ijimpeng.2017.01.016

Mishra, R. (2018). FEM based prediction of 3D woven fabric reinforced concrete under mechanical load. Journal of Building Engineering, 18, 95–106. https://doi.org/10.1016/j.jobe.2018.03.003

Mohana, R., Prabavathy, S., & Leela Bharathi, S. M. (2021). Sustainable utilization of industrial wastes for the cleaner production of ferrocement structures: A comprehensive review. Journal of Cleaner Production, 291, 125916. https://doi.org/10.1016/j.jclepro.2021.125916

Naaman, A. E. (2012). Evolution in Ferrocement and Thin Reinforced Cementitious Composites. Arabian Journal for Science and Engineering, 37(2), 421–441. https://doi.org/10.1007/s13369-012-0187-4

Rifaie, W. Al, & Hantoosh, N. M. (2022). New Composite Floor Construction. 2022 Advances in Science and Engineering Technology International Conferences (ASET), 1–6. https://doi.org/10.1109/ASET53988.2022.9735119

Sasi, E. A., & Peled, A. (2015). Three dimensional (3D) fabrics as reinforcements for cement-based composites. Composites Part A: Applied Science and Manufacturing, 74, 153–165. https://doi.org/10.1016/j.compositesa.2015.04.008

Serrano-Guzmán, M. F., & Pérez-Ruíz, D. D. (2010). Análisis de sensibilidad para estimar el módulo de elasticidad estático del concreto. Concreto y Cemento. Investigación y Desarrollo, 2, 17–30. https://www.redalyc.org/articulo.oa?id=361233547002

Shaheen, Y. B. I., Etman, Z. A., & Gomaa, O. (2019). Structural behavior of thin ferrocement plates with and without stiffeners subjected to compression loading. Asian Journal of Civil Engineering, 20(2), 237–260. https://doi.org/10.1007/s42107-018-0101-9

Valencia Jiménez, E., Pérez Lara y Hernández, M. Á., & Arjona Catzim, I. F. (2020). Análisis del comportamiento mecánico a compresión de paneles estructurales prefabricados de ferrocemento. Perspectivas de La Ciencia y La Tecnología, 3(6), 138–147. https://revistas.uaq.mx/index.php/perspectivas/article/view/253

Yerramala, A., Rama Chandurdu, C., & Bhaskar Desai, V. (2016). Impact strength of metakaolin ferrocement. Materials and Structures, 49(1–2), 5–15. https://doi.org/10.1617/s11527-014-0469-2

Yerramala, A., Ramachandurdu, C., & Bhaskar Desai, V. (2013). Flexural strength of metakaolin ferrocement. Composites Part B: Engineering, 55, 176–183. https://doi.org/10.1016/j.compositesb.2013.06.029

Published
2024-04-12
How to Cite
Hernánez-Pérez, J., Jiménez-Montoya, A., Pascual-Francisco, J. B., Contreras-Ramírez, J. C., López-Segundo, N., & Miramar-Mena, T. (2024). Proposal and deflection analysis of lightened slabs with embedded three-dimensional metal arrangement. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 12(Especial), 68-74. https://doi.org/10.29057/icbi.v12iEspecial.12140