Micropits MEMS

  • José Luis González-Vidal UAEH
Keywords: MEMS, micropits, etching.

Abstract

Three sized Micropits were developed. Micropits were designed and fabricated using wet etching. MEMS fabrication consists of thin film deposition and patterned of several geometric structures. For Si substrate etching three layers SiO2/ Si3N4/ SiO2 were deposited and patterned. They were used as a mask. Micropit pattern was transferred by lift off technique. SiO2, Si3N4 layers and Si substrate were etched by HF, H3PO4 and KOH solutions. Si substrate has 7mm/h etching rate. Micropit micrographs were obtained by scanning electronic microscopy (SEM). Micropits are MEMS widely used in gas sensors, because they provide thermal isolation, Micropits will be used for gas microsensors, polisilicon microheater and gas sensor thin film will be deposited later. Today gas sensors have several applications in manufacturing & industry, such as, automotive, medicine/biomedical, consumer products, aerospace, chemical, optical displays, fluidics, wireless and optical communications.

Downloads

Download data is not yet available.

References

Beeby, S., Ensell, G., Kraft, M., & White, N. (2004). MEMS Mechanical Sensors. Norwood, MA: Artech House, www.artechhouse.com.

Bhansali, S., & Vadusev, A. (2012). MEMS for Biomedical Applications. Sawston, Reino Unido: Woodhead Publishing, UK,. www.elsevier.com/books/mems-for-biomedical-applications/bhansali/978-0-85709-129-1.

Deepak, B., & et al. (2016). Low Actuating Voltage Spring-Free RF MEMS SPDT Switch. Journal of Electrical and Computer Engineering, 2016, 1-7. doi:http://dx.doi.org/10.1155/2016/7984548.

Dhineshkaarthi.K, Preeth, S. L., & Kumar, R. (2017). MEMS Cantilever based identification of Carcinogenic MZN. 2017 International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE2017) (págs. 1-4). Karur, India: IEEE. doi:10.1109/ICEICE.2017.8191863.

Gatzen, H. H., & Leuthold, V. S. (2015). Micro and Nano Fabrication, Tool and Processes. Springer. doi:DOI 10.1007/978-3-662-44395-8.

González-Vidal, J. L. (31 de Marzo de 2006). Aplicación de estructuras micro-electro-mecánicas (MEM's) con tecnología s, para sensores de parámetros físicos. doctoral thesis. Mexico City, Mexico, CINVESTAV-IPN, www.vlsilab.cinvestav.mx/files/Gonzalez-Vidal_PhD_marb.pdf.

González-Vidal, J. L., & et al. (2005). Gas Microsensing System with a FGMOS on a MEM Microstructure. Microthecnologies for the New Milenium. Sevilla, Espain.

González-Vidal, J. L., Reyes-Barranca, A., & Calleja-Arriaga, W. (2005). Technological processes for Micro-Heater and Micro-Hot-Plate in the implementation of a MEM gas sensor. 2nd International Conference on Electrical and Electronics Engineering (págs. 440-443). México: IEEE.

González-Vidal, J. L., Reyes-Barranca, M. A., & Vázquez-Acosta, E. N. (2018). Conditioning and Signal Amplification Stages for a Smart Gas Microsensor MEMS. Pistas educativas, 39(118), 621-336. http://www.itcelaya.edu.mx/ojs/index.php/pistas/article/view/1193.

Hongwei, Q. (2016). CMOS MEMS Fabrication Technologies and Devices Micromachines. Micromachines, 7(14), doi:10.3390/mi7010014.

Maluf, N., & Williams, K. (2004). An Introduction to Microelectromechanical Systems Engineering, Second Edition, (2nd ed.). Norwood, MA: Artech House Inc. http://www.artechhouse.com.

Pandya, H., Park, K., & Desai, J. P. (2015). Design and fabrication of a flexible MEMS-based electromechanical sensor array for breast cancer diagnosis. J Micromech Microeng, 25(7), 1-28. doi:DOI: 10.1088/0960-1317/25/7/075025.

Petersen, K. (Mayo de 1982). Silicon as a Mechanical Material. Proceedings of the IEEE, 70(5), 420 - 457. doi:10.1109/PROC.1982.12331.

Reyes-Barranca, M. A., & et al. (2009). Floating Gate Mosfet Circuit Design for a Monolithic MEMS Gas Sensor. SFORUM 2009 9TH MICROELECTRONICS. Natal, Brasil.

Reyes-Barranca, M. A., & et al. (2010). Using a Floating-Gate MOS Transistor as a Transduce in a MEMS Gas Sensing. Sensors, 10(11), 10413-10434. doi:10.3390/s101110413.

Senturia, S. D. (2001). Microsystem Desing. Kluvert Academic Publishers.

Sze, S. M., & Ng, K. (2007). Physics of Semiconductor Devices (3rd. ed.). John Wiley & Sons Ltd, New Jersey, USA.

Varadan, V. K., Vinoy, K., & Gopalakrishnan, S. (2006). Smart Material Systems and MEMS: Design and Development Methodologies, John Wiley & Sons Ltd, Chichester, England, Chichester, England, www.wiley.com.

Vázquez-Acosta, E. N., & et al. (2012). Simplified Adjusting and Simulation of a Pseudo Gaussian Function in Voltage Domain Generated with FGMOS Transistors on Circuit Simulation Software Exportable to a Multi Domain Platform. 9th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2012). Mexico City.

Vázquez-Acosta, E. N., & et al. (2012). Performance Evaluation of a Temperarure Control Stage Used on a Semiconductor Gas Sensor 3d Electrothermal Model Through Simulink. En S. C. Chakravarty, & S. C. Chakravarty (Ed.), Technology And Engineering Aplications Of Simulink (págs. 167-188). Rijeka, Croatia: Intech. www.intechopen.com/books/technology-and-engineering-applications-of-simulink/performance-evaluation-of-a-temperature-control-stage-used-on-a-semiconductor-gas-sensor-3d-elec.

Vázquez-Acosta, E. N, & et al. (2012). Release Optimization of Suspended Membranes in Mems. En Micromachining Techniques for Fabrication of Micro and Nano Structures (págs. 183-204). Zagreb, Croacia: Intech.
Published
2019-01-05
How to Cite
González-Vidal, J. L. (2019). Micropits MEMS. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 6(12), 91-94. https://doi.org/10.29057/icbi.v6i12.3432

Most read articles by the same author(s)