Development of a plasmonic absorber: evaluation as a thermosolar material

  • Eduardo Carlos Martinez-Zuñiga Universidad Autónoma del Estado de México
  • Alfredo Rafael Vilchis-Nestor Universidad Autónoma del Estado de México
  • Marco A. Camacho-López Universidad Autónoma del Estado de México
  • Oscar F. Olea-Mejía Universidad Autónoma del Estado de México
  • Miriam Estrada-Flores Instituto Politécnico Nacional
Keywords: nanoparticle, thermosolar, plasmonic, absorber

Abstract

The development of new materials that have the ability to absorb a wide range of wavelengths, of the electromagnetic spectrum, will allow us to improve the efficiency of solar thermal cells. The use of plasmonic absorbers has made it possible to improve the capture of solar radiation and thus be able to transform the absorbed light into electrical or thermal energy. In this work we will address the photothermal effect of plasmonic materials, such as gold, silver and copper, to transform solar radiation into thermal energy as a consequence of surface plasmon resonance and the generation of hot spots between nanoparticles, that is why We will obtain by the biosynthesis method different sizes and morphologies of gold nanoparticles, which will be deposited on a porous aluminum substrate, in order to increase the interaction that this type of plasmonic materials have with solar radiation. The proposed design of the Plasmonic Absorber was evaluated with a continuous spectrum lamp from 420 to 800 nm, obtaining a temperature difference between 2.0 and 2.5 ° C, and under ambient conditions a temperature difference of 20.0 to 25.0 ° C was obtained.

Downloads

Download data is not yet available.

References

M. Estrada-Flores, C. Reza-San Germán, (2010), Síntesis y caracterización de películas nanoporosas de Al2O3, Superficies y Vacío, 23 (2) 1-5.

DOI: 942415092001

Koray Aydin, Vivian E. Ferry, Ryan M. Briggs y Harry A. Atwater., (2011), Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers, Nature Communications, 2, 1-7,

DOI: 10.1038/ncomms1528.

Lei Lei, Shun Li, Haixuan Huang, Keyu Tao, Ping Xu. (2018), Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Optics Express, 26, 1-7

DOI: 10.1364/OE.26.005686

Luwei Zhou, Cheng Zhang, Liujing Li, Tingting Liu, Ke Li, Shaolong Wu, Xiaofeng Li. (2021), Nanobowls-assisted broadband absorber for unbiased Si-based infrared photodetection. Optics Express, 29, 1-12

DOI. 10.1364/OE.423897

Nayely Torres-Gómez, Rodolfo D. Ávila-Avilés, Alfredo R. Vilchis-Néstor, (2020), Biosynthesis and characterization of nanostructures by electron microscopy, Mundo Nano, 13(25), 29-43.

DOI: 10.22201

Santiago Rodríguez Suárez, Emmanuel Espinoza Navarrete; GIZ: Joscha Rosenbuch, Hermilio O. Ortega Navarro; IER: Dr. Manuel Martínez Fernández, Dra. Karla G. Cedano Villavicencio, Miriam M. Armenta. (2017), LA INDUSTRIA SOLAR FOTOVOLTAICA Y FOTOTÉRMICA EN MÉXICO, ProMéxico, Primera Edición, ISBN: 978-607-97294-8-6, pp. 27-30.

Zhongming Huang, Shengliang Li, Xiao Cui, Yingpeng Wan, Yafang Xiao, Shuang Tian, Hui Wang, Xiaozhen Li, Qi Zhao and Chun-Sing Lee. (2020), “Broadband aggregation-independent plasmonic absorber for highly efficient solar steam generation”, J. Mater. Chem., 8, 10742-10746.

DOI: 10.1039/x0xx00000x

Published
2021-12-12
How to Cite
Martinez-Zuñiga, E. C., Vilchis-Nestor, A. R., Camacho-López, M. A., Olea-Mejía, O. F., & Estrada-Flores, M. (2021). Development of a plasmonic absorber: evaluation as a thermosolar material. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 9(Especial2), 13-18. https://doi.org/10.29057/icbi.v9iEspecial2.7994