Five Axis CNC Machine Design

Keywords: Mechanical design, 5-axis CNC, Finite element method, Cutting forces calculation

Abstract

It is present the mechanical design of a 5-axis Computerized Numerical Control (CNC) machine tool for learning and use in machining centers. Different methodologies were used, such as the SWOT analysis, Pro-Con, Quality House, morphological table, and decision matrices. Relative calculations are shown to determine the cutting forces, and the finite element analysis with SolidWorks, where a maximum force value was set by the chip removal process, seeking an adequate robustness of the machine for roughing soft materials such as clays, woods, and polymers. Necessary torques are determined for an adequate selection of the actuators for each one of the axes of the machine.

Downloads

Download data is not yet available.

References

Acuña, F., Bustillos, D., & Coque, K., (2009). Diseño y Construcción de un Prototipo de Centro de Mecanizado Vertical CNC de 5 Ejes para el Laboratorio CNC de la ESPE Extensión Latacunga. Extensión Latacunga, Vol. 10.

Bo, P., Bartoň, M., Plakhotnik, D., & Pottmann, H., (2016). Towards efficient 5-axis flank CNC machining of free-form surfaces via fitting envelopes of surfaces of revolution. Computer-Aided Design, vol. 79, p. 1-11. https://doi.org/10.1016/j.cad.2016.04.004

Borrell R. P. (2017). Análisis de Fuerzas de Corte en Procesos de Taladrado para Aluminio 2024 T6. Tesis UNAM.

Calleja, A., Bo, P., González, H., Bartoň, M., & de Lacalle, L. L., (2018). Highly accurate 5-axis flank CNC machining with conical tools. Int. J. Adv. Manuf. Technol, vol. 97, p. 1605-1615. https://doi.org/10.1007/s00170-018-2033-7

Cross N., (2008). Engineering Design Methods: Strategies for Product Design. fourth ed., The McGraw-Hill Companies, England.

Grupo de apoyo técnico para selección. Manual de selección de motores de paso a paso sistema SureStep, SureStep.

Petko, M., Gac, K., Góra, G., Karpiel, G., Ochoński, J., & Kobus, K., (2016). CNC system of the 5-axis hybrid robot for milling. Mechatronics, Vol. 37, p. 89-99. https://doi.org/10.1016/j.mechatronics.2016.03.001

Sevic, Martin., & Keller, Petr. (2019), Desing of CNC Milling Machine as a Base of Industry 4.0 Enterprise. MM Science Journal, vol 12, p. 3555-3560. http://doi.org/10.17973/MMSJ.2019122019042

Shigley, J. E. (2012), Diseño en ingenieria Mecánica. McGraw-Hill, New York.

Son, S., Kim, T., Sarma, S. E., & Slocum, A., (2009). A hybrid 5-axis CNC milling machine. Precision Engineering, vol. 33, p. 430-446. https://doi.org/10.1016/j.precisioneng.2008.12.001

Ullman D., (2003). The mechanical design process. Fourth ed. McGraw-Hill, New York.

Xu, J., Zhang, D., & Sun, Y., (2019). Kinematics performance oriented smoothing method to plan tool orientations for 5-axis ball-end CNC machining. International Journal of Mechanical, vol. 157, p. 293-303. https://doi.org/10.1016/j.ijmecsci.2019.04.038

Published
2022-11-30
How to Cite
Mandujano-Salazar, B., Hernandez-Perez, J., Benitez-Morales, J. G., & Aguilera-Jimenez, M. A. (2022). Five Axis CNC Machine Design. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10(Especial6), 91-99. https://doi.org/10.29057/icbi.v10iEspecial6.9278