Avances y Desafíos en la Cosecha de Agua Atmosférica: Revisión de Técnicas Pasivas para la Recolección de Niebla

Autores/as

DOI:

https://doi.org/10.29057/est.v10iEspecial.13555

Palabras clave:

Agua atmosférica, Captación pasiva de agua, Niebla, Mallas, Hidrófobo, Hidrófilo

Resumen

La captación de agua atmosférica a través de medios pasivos, como la recolección de niebla mediante mallas, ha ganado atención en los últimos años como una solución sostenible para enfrentar la escasez de agua en regiones áridas y semiáridas. Este artículo ofrece una revisión exhaustiva de las técnicas pasivas de recolección de niebla por medio de mallas, destacando los avances tecnológicos más recientes, el uso de materiales innovadores y el desarrollo de metodologías aplicadas a este campo. También, se analizan los desafíos actuales, incluyendo la eficiencia de recolección, la durabilidad de los materiales y la viabilidad económica de estos sistemas. El objetivo de este trabajo es proporcionar una visión general de las tendencias emergentes e identificar las áreas de investigación requeridas para optimizar estas tecnologías. Además, proporcionar una base sólida para investigadores y profesionales interesados en el desarrollo y la implementación de sistemas pasivos de cosecha de agua atmosférica.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Organización Mundial de la Salud (OMS) y UNICEF. Progress on Household Drinking Water. Sanitation and Hygiene 2000-2020: Five years into the SDGs. 2021.

Expansión. Se pierde más agua por fugas que la que llega al Cutzamala. UNAM. Obras por expansión ¿Qué porcentaje del agua potable en México se desperdicia por fugas? (expansion.mx). 2024

Instituto Nacional de Estadística y Geografía (INEGI). Estadísticas del Agua en México. 2022.

Atencio, R., Briceño, A., Cosecha de humedad atmosférica: Nuevos materiales y tecnologías bioinspirados para mitigar la escasez de agua. Ciencia en Revolución, 9, 25. 2023.

Bautista, A. L., Mendoza, M., Cruz, F., Álvarez, C. R., Duarte, H. F., Potencial de captura de agua atmosférica en el noroeste de México. Interciencia, 43, 10. 2018. (interciencia.net).

Azeem, A., Noman, M. T., Wiener, J., Petru, M., Louda, P. Structural design of efficient fog collectors: A review. Environmental Technology & Innovation, 20, 101169. 2020.

Qadir, M., Jiménez, G. C., Farnum, R. L., Dodson, L. L., Smakhtin, V. Fog Water Collection: Challenges beyond Technology. Water. 10(4), 372. 2018.

{8] Raveesh, G., Goyal, R., Tyagi, S. K. Advances in atmospheric water generation technologies. Energy Conversion and Management. 2021. 239, 114226.

Hadba, L., Mendonça, P., Silva, L.-T., Carvalho, M.-A. Selecting Fog Harvesting Meshes for Environmental Conditioning Structures. International Journal of Environmental Science and Development. 11, 12, 540-548, 2020.

Park, J., Lee, C, Lee, S., Cho, H., Moon, M.-W., Kim, S.-J. Clogged water bridges for fog harvesting. Soft Matter. 17, 136-144. 2021,

Mukhopadhyay, A, Datta, A, Dutta, PS, Datta, A, Ganguly, R. Droplet Morphology-Based Wettability Tuning and Design of Fog Harvesting Mesh to Minimize Mesh-Clogging. Langmuir. 40(15), 8094-8107. 2024.

Kowalski, N.G, Shi, W, Kennedy, B.S, Boreyko, J.B. Optimizing Fog Harps. ACS Applied Materials & Interfaces. 13, 32. 2021.

Elshennawy, A.A., Abdelaal, M.Y., Hamed, A.M. Evaluating Mesh Geometry and Shade Coefficient for Fog Harvesting Collectors. Water Resour Manage. 37, 6107–6126. 2023.

Singh, P., Sikarwar, B., Modelling and Analysis of Factors Affecting Moist Air Condensation on MeshLike Surface for Sustainable Water Harvesting. Journal of Engineering Research. 2021

Ghosh, R, Ganguly, R. Fog harvesting from cooling towers using metal mesh: Effects of aerodynamic, deposition, and drainage efficiencies. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 234(7), 994-1014. 2020.

Montoya, D., Wolfram, J., Rivera, J., Using a porous medium model to simulate the air flow through fog water collectors. Journal of Porous Media. 23. 2020

Silva-Llanca, L., Carvajal, D., Larraguibel, D., González, B., A CFD study of the aerodynamic efficiency of V-shaped fog water collectors. International Journal of Heat and Fluid Flow, 107, 109382. 2024.

Mosa, M., Radwan, F., Al-Ghobari, H. Fouli, H., Ali-Alazba, A. Impact of varied fog collector designs on fog and rainwater harvesting under fluctuating wind speed and direction. Earth Sci Inform 17, 617–631. 2024.

Kim, J.-Y., Kang, J.-H., Moon, J.-W., Jung, S.-Y. Improvement of water harvesting performance through collector modification in industrial cooling tower. Scientific Reports (Nature Publisher Group). 12, 4685. 2022.

Sun, H., Tian, W., Sun, Y., Li, M. 3D-printed mesh membranes with controllable wetting state for directional droplet transportation. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 638, 128143. 2022.

Knapczyk-Korczak, J., Szewczyk, P.K., Ura, D.P., Berent, K., Stachewicz, U. Hydrophilic nanofibers in fog collectors for increased water harvesting efficiency. RSC Adv. 10, 22335-22342. 2020.

Knapczyk-Korczak, J., Ura, D.P., Gajek, M., Berent, K., Bernasik, A., Chiverton, J.P., Stachewicz, U. Fiber-based composite meshes with controlled mechanical and wetting properties for water harvesting. ACS Appl. Mater. Interfaces. 12, 1, 1665–1676. 2020.

Jin, L.-L., Zhang, J.-Y., He, Z.-C., He, W.-X., Sun, C., Chu, Z.-W., Wang, X.-W., Yuan Z.-H. Constructing CoO Nanoneedle Hierarchical Structure Based on Cassie States for Highly Efficient Fog Harvesting. Nano Brief Report. 17, 05, 2250035. 2022.

Knapczyk-Korczak, J., Szewczyk, P.K., Ura, D.P., Bailey, R.J., Bilotti, E., Stachewicz, U. Improving water harvesting efficiency of fog collectors with electrospun random and aligned Polyvinylidene fluoride (PVDF) fibers. Sustainable Materials and Technologies. 25, e00191. 2020.

Lee, J.H., Lee, Y.Jin., Kim, H.-Y., Moon, M.-W., Kim, S.J. Unclogged Janus Mesh for Fog Harvesting. ACS Applied Materials & Interfaces, 14 (18), 21713-21726. 2022.

Gürsoy, M., Kocadayıoğulları, B. Environmentally friendly approach for the plasma surface modification of fabrics for improved fog harvesting performance. Fibers polym 24, 3557–3567. 2023.

Elshennawy, A.A., Abdelaal, M.Y., Hamed, A.M. et al. Fog collection rate investigation for a hydrophobic surface and different inclinations of rectangular meshes. Euro-Mediterr J Environ Integr. 2024.

Wu, J., Yan, Z., Yan, Y., Li, C., Dai, J. Beetle-inspired dual-directional janus pumps with interfacial asymmetric wettability for enhancing fog harvesting. ACS Appl. Mater. Interfaces. 14, 43, 49338–49351. 2022.

Bae, C., Oh, S., Han, J., Nam, Y., Lee, C., Water penetration dynamics through a Janus mesh during drop impact. Soft Matter. 16, 6072-6081. 2020.

Başal, G., Oral, N. A hydrophilic/hydrophobic composite structure for water harvesting from the air. Textile and Apparel, 32(4), 384-389. 2022.

Gou, X., Guo, Z., Hybrid hydrophilic–hydrophobic CuO@TiO2-coated copper mesh for efficient water harvesting. Langmuir. 36, 1, 64–73. 2020.

Knapczyk-Korczak, J., Zhu, J., Ura, D.P., Szewczyk, P.K., Benker, L., Agarwal, S., Stachewicz, U. Enhanced water harvesting system and mechanical performance from janus fibers with polystyrene and cellulose acetate. ACS Sustainable Chem. Eng. 9, 1, 180–188. 2021.

Huan, J., He, Y., Geng, X., Hou, Y., Zheng, Y., Enhanced fog harvesting through programmable droplet movement via bidirectional wettable gradient and microchannel-connected pattern gradient. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 659, 130780. 2023.

Showket, J., Majumder, S., Kumar, N., Sett, S., Mahapatra, P. S., Fog harvesting on micro-structured metal meshes: Effect of surface ageing. Micro and Nano Engineering. 22, 100236, 2024.

Wang, Y., Zhao, W., Han, M., Guan, L., Han, L., Hemraj, A., Tam, K. H. Sustainable superhydrophobic surface with tunable nanoscale hydrophilicity for water harvesting applications. A journal of the German chemical society. 16, 10. 2021.

He, W.-X. Jin, L.-L., Ma, W.-J., Li, X., Li, J., Wang, X.-W. Wettability contrast on the surface of CuO nanostructures for highly efficient fog harvesting. Current Applied Physics. 53, 126-131, 2023.

Ghosh, R., Patra, C., Singh, P., Ganguly, R., Sahu, R. P., Zhitomirsky, I., Puri, I. K. Influence of metal mesh wettability on fog harvesting in industrial cooling towers. Applied Thermal Engineering. 181, 115963. 2020.

El-Maghraby, H. F., Alhumaidi, A., Alnaqbi, M. A., Sherif, M., Tai, Y., Hassan, F., Greis, Y. E. Bioinspired asymmetric surface property of functionalized mesh to maximize the efficiency of fog harvesting. ChemNanoMat. 8, 11. 2022.

Zhang, Y., Zhong, L., Guo, Z., A hybrid stainless-steel mesh with nano-array structure applied for efficient fog harvesting by tuning wetting, Chemistry letters, 49, 1, 79–82. 2020.

Guo, Y., Li, Y., Zhao, G., Zhang, Y., Pan, G., Yu, H., Zhao, M., Tang, G., Liu, Y. Patterned hybrid wettability surfaces for fog harvesting. Langmuir. 39, 13, 4642–4650. 2023.

Ghosh, R., Sahu, R. P., Ganguly, R., Zhitomirsky, I., Puri, I. K. Photocatalytic activity of electrophoretically deposited TiO2 and ZnO nanoparticles on fog harvesting meshes. Ceramics International. 46, 3. 3777-3785. 2020.

Shi, W, De-Koninck, L.H., Hart, B. J., Kowalski, N. G., Fugaro, A. P., Van der Sloot, T. W., Ott, R. S., Kennedy, B. S., Boreyko, J. B. Harps under heavy fog conditions: superior to meshes but prone to tangling. ACS Appl Mater Interfaces. 12(42), 48124-48132. 2021.

Nguyen, L.t., Bai, Z., Zhu, J., Gao, C., Liu, X., Wagaye, B. T., Li, J., Zhang, B., Guo, J. Three-dimensional multilayer vertical filament meshes for enhancing efficiency in fog water harvesting. ACS Omega 6, 5, 3910–3920. 2021.

Shi, W., Van der Sloot, T. W., Hart, B. J., Kennedy, B. S., Boreyko, J. B. Harps enable water harvesting under light fog conditions. Advanced sustainable systems. 4, 6, 2020.

Zhang, Y., Cai, Y., Shi, J., Morikawa, H., Zhu, C. Multi-bioinspired hierarchical Janus membrane for fog harvesting and solar-driven seawater desalination. Desalination. 540, 115975. 2022.

Hoque, M. J., Yan, X., Qiu, H., Feng, Y., Ma, J., Li, J., Du, X., Linjawi, M., Agarwala, S., Miljkovic, N. Defect-density-controlled phase-change phenomena. ACS Appl Mater Interfaces. 2023.

Chen, L., Li, W., Gan, Z., Zhou, Y., Chen, M., Cui, D., Ge, H., Chan, P. K. L., Wang, L., Li, W.-D. Ultrathin metal-mesh Janus membranes with nanostructure-enhanced hydrophobicity for high-efficiency fog harvesting. Journal of Cleaner Production. 363, 132444. 2022.

Lee, J., So, J., Bae, W.-G., Won, Y. The design of hydrophilic nanochannel-macrostripe fog collector: enabling wicking-assisted vertical liquid delivery for the enhancement in fog collection efficiency. Advanced materials interfaces. 7, 11. 2020.

Deng, C., Zhou, W., Li, Y., Lin, M., Dong, L., Zhou, C. Fabrication of cactus-inspired superwetting meshes for highly efficient fog harvesting. Ind. Eng. Chem. Res. 63, 15, 6794–6802. 2024.

He, W.-X., Wang, X.-W., Chu, Z.-W., Ma, X.-J., Sun, C., Zhang, J.-Y. CuO nanomesh hierarchical structure for directional water droplet transport and efficient fog collection. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 657, Part A, 130512. 2023.

Singh, P. L., Sikarwar, B. S. Fabrication and analysis of hydrophobic mesh-metallic surface for moist air condensation. Advances in Materials and Processing Technologies, 8(4), 3950–3961. 2022.

Gu, G., Gu, G., Wang, J., Yao, X., Ju, J., Cheng, G., Du, Z. A water collection system with ultra-high harvest rate and ultra-low energy consumption by integrating triboelectric plasma. Nano Energy. 96, 107081. 2022.

Li, D., Li, C., Zhang, M., Xiao, M., Li, J., Yang, Z., Fu, O., Wang, P., Yu, K., Pan, Y. Advanced fog harvesting method by coupling plasma and micro/nano materials. ACS Appl. Mater. Interfaces. 16, 8, 10984–10995. 2024.

Jin, L.-L., Wang, X.-W., Sun, C., Zhang, J.-Y., He, W.-X., Yuan, Z.-H. Sisal-inspired design of ZnO nanoneedle multistage structure for efficient fog harvesting. Surfaces and Interfaces. 25, 101150. 2021.

Li, D., Li, C., Li, J., Yang, W., Zhang, M., Yang, Y., Yu, K. Efficient direction-independent fog harvesting using a corona discharge device with a multi-electrode structure. Plasma Sci. Technol. 24, 095502. 2022.

Jiang, Y., Xu, R., Liu, S., Liu, G., an, X. Electrostatic fog collection mechanism and design of an electrostatic fog collector with nearly perfect fog collection efficiency. Chemical Engineering Science. 247, 117034. 2022.

Parisi, G., Szewczyk, P. K., Narayan, S., Ura, D. P., Knapczyk-Korczak, J., Stachewicz, U. Multifunctional piezoelectric yarns and meshes for efficient fog water collection, energy harvesting, and sensing. 4, 7. 2024.

Sharifvaghefi, S., Kazerooni, H. Fog harvesting: combination and comparison of different methods to maximize the collection efficiency. SN Appl. Sci. 3, 516. 2021.

Li, X., Liu, Y., Zhou, H., Gao, C., Li, D., Hou, Y., Zheng, Y. Fog collection on a bio-inspired topological alloy net with micro-/nanostructures. ACS Appl. Mater. Interfaces. 12, 4, 5065–5072. 2020.

Zhu, P., Chen, R., Zhou, C., Tian, Y., Wang, L. Asymmetric fibers for efficient fog harvesting. Chemical Engineering Journal. 415, 128944. 2021.

Descargas

Publicado

2024-12-13

Cómo citar

Chavero Navarrete, E., Poblano-Salas, C. A., Escamilla-Martínez, A., Cortina-Gutíerrez, M. A., Corona-Castuera, J., & García-Meneses, A. . (2024). Avances y Desafíos en la Cosecha de Agua Atmosférica: Revisión de Técnicas Pasivas para la Recolección de Niebla. Boletín Científico INVESTIGIUM De La Escuela Superior De Tizayuca, 10(Especial), 24–34. https://doi.org/10.29057/est.v10iEspecial.13555

Número

Sección

Artículos