Persistencia en las fluctuaciones asociadas al índice de concentración del ozono O3 en la ciudad de México
Comportamiento persistente en los máximos de o3 de la CDMX
DOI:
https://doi.org/10.29057/est.v8i15.8786Palabras clave:
Función de estructura, fluctuación, Hurst, Ozono troposferico, persistencia estadísticaResumen
La función de estructura Fq ( Δn ) de orden q es usada para analizar la tendencia de las fluctuaciones asociadas a los valores máximos de concentración del Ozono (MaxO3 ), relativos a seis estaciones de la base de datos de la Red Automática de Monitoreo Atmosférico (RAMA) en un periodo de 20 años, durante 1998 a 2017. Encontramos que las fluctuaciones de O3 obedecen un comportamiento de ley de potencia Fq ( Δn ) ∝ ( Δn )Hq , donde Hq =0.878 ±0.024 , Hq =0.757 ± 0.033 y Hq =0.531± 0.0535 con q= 1, 2, 3, 4, 5 para concentraciones de Ozono O3 ≥ 100, 150, 200 ppb respectivamente, exhibiendo persistencia de las series temporales analizadas con correlaciones de largo alcance para O3 ≥ 100, 150 ppb hasta en cuatro órdenes de magnitud, mientras que para O 3 ≥ 200 ppb se acerca más a la aleatoriedad, es decir, el contaminante O3 no se está dispersando eficientemente si no que contribuye a este comportamiento de persistencia para MaxO3 ≥ 100, 150 ppb en el área de las seis estaciones de monitoreo.
Descargas
Citas
Balankin A. S. y Morales D. (2005). Anomalous Roughness of Turbulent Interfaces with System Size Dependent Local Roughness Exponent. Physics Letters A 339(1–2): 23–32. DOI: 10.1016/j.physleta.2005.02.064
Barabási A. y Vicsek T. (1991). MultifractalitBalankin A. S. y Morales D. (2005). Anomalous Roughness of Turbulent Interfaces with System Size Dependent Local Roughness Exponent. Physics Letters A 339(1–2): 23–32. DOI: 10.1016/j.physleta.2005.02.064y of Self-Affine Fractals. Physical Review A 44(4): 2730–33. DOI: 10.1103/PhysRevA.44.2730
Bell M. L., Devra L. D., Gouveia N., Borja-Aburto V. H. y Cifuentes L. A. (2006). The Avoidable Health Effects of Air Pollution in Three Latin American Cities: Santiago, São Paulo, and Mexico City. Environmental Research 100(3): 431–40. DOI: 10.1016/j.envres.2005.08.002
Birnir B. (2013). The Kolmogorov–Obukhov Statistical Theory of Turbulence. Journal 208 of Nonlinear Science 23(4): 657–88. DOI: 10.1007/s00332-012-9164-z
Bon D. M., Ulbrich I. M., y de Gouw J. A. (2011). Measurements of Volatile Organic Compounds at a Suburban Ground Site (T1) in Mexico Mity during the Milagro 2006 Campaign: Measurement Comparison, Emission Ratios, and Source Attribution. Atmospheric Chemistry and Physics 11((MILAGRO/INTEX-B 2006)): 2399–2421. DOI: 10.5194/acp-11-2399-2011
Chelani, A. B. (2009). Statistical Persistence Analysis of Hourly Ground Level Ozone Concentrations in Delhi. Atmospheric Research 92(2): 244–50. DOI: 10.1016/j.atmosres.2008.12.001
Frisch U. (1995). Turbulence: The Legacy of A.N. Kolmogorov. 1a ed. Cambridge University Press. UK, 312 pp. DOI: 10.1017/CBO9781139170666
Kolmogorov A. N. (1991). The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 434(1890): 9–13. DOI: 10.1098/rspa.1991.0075
Kun H., Plamen I., Zhi C., Carpena P. y Stanley E. H. (2001). Effect of Trends on Detrended Fluctuation Analysis. Physical Review E 64(1): 011114. DOI: 10.1103/PhysRevE.64.011114
Lei W., de Foy B., Zavala M., Volkamer R., y Molina L. T.et al. (2007). Characterizing Ozone Production in the Mexico City Metropolitan Area: A Case Study Using a Chemical Transport Model. Atmospheric Chemistry and Physics 7(5): 1347–66. DOI: 10.5194/acp-7-1347-2007
Lei W., Li G., y Molina L. (2012). Modeling the Impacts of Biomass Burning on Air Quality in and around Mexico City. Atmospheric Chemistry and Physics Discussions 12(9): 22891–943. DOI: 10.5194/acpd-12-22891-2012
Li G., Lei W., Zavala M., Volkamer R., Dusanter S., Stevens P. y Molina T. (2010). Impacts of HONO Sources on the Photochemistry in Mexico City during the MCMA-2006/MILAGO Campaign. Atmospheric Chemistry and Physics Discussions 10(2): 4143–88. DOI: 10.5194/acpd-10-4143-2010
Loomis D. P., Borja-Aburto V. H. Bangdiwala S. I. y Shy C.M. (1996). Ozone Exposure and Daily Mortality in Mexico City: A Time-Teries Analysis. Health Effects Institute. Research Report.
Malcai O., Lidar D. A., Biham O. y Avnir D. (1997). Scaling Range and Cutoffs in Empirical Fractals. Physical Review E 56(3): 2817–28. DOI: 10.1103/PhysRevE.56.2817
Mandelbrot B. 1(997). Fractals and Scaling in Finance. New York, 1a ed. NY: Springer. New York, 551 pp. DOI: 10.1007/978-1-4757-2763-0
Meakin P. (1998). Fractals, Scaling, and Growth Far from Equilibrium. Cambridge University Press. Cambridge, U.K. , 634 pp. DOI: 10.1002/(SICI)1099-1204(199911/12)12:6<493::AID-JNM346>3.0.CO;2-7
Meraz M., Rodriguez E., Fermat R., Echeverria J.C. y Alvarez Ramirez J. (2015). Statistical Persistence of Air Pollutants (O3, SO2, NO2 and PM10) in Mexico City. Physica A: Statistical Mechanics and its Applications 427: 202–17. DOI: 10.1016/j.physa.2015.02.009
OECD (2012). OECD Environmental Outlook to 2050: The Consequences of Inaction. OECD, 353 pp. DOI: 10.1787/9789264122246-en
Orta-García S, Peréz-Vázquez F., Gonzalez-Vega C., Varela-Silva J., Hernández-González L., y Pérez-Maldonado I. (2014). Concentrations of Persistent Organic Pollutants (POPs) in Human Blood Samples from Mexico City, Mexico. Science of The Total Environment 472: 496–501. DOI: 10.1016/j.scitotenv.2013.11.059
Peitgen H. O., Jürgens H, y Saupe D. (2012). Chaos and Fractals: New Frontiers of Science. 2a ed. Springer. New York, 904 pp
Plocoste T., Calif R., y Jacoby-Koaly S. (2017). Temporal Multiscaling Characteristics of Particulate Matter P M 10 and Ground-Level Ozone O3 Concentrations in Caribbean Region. Atmospheric Environment 169: 22–35. DOI: 10.1016/j.atmosenv.2017.08.068
Riojas-Rodríguez H., Escamilla-Cejudo J.A., González-Hermosillo J.A., Téllez-Rojo M.M., Vallejo M, Santos-Burgoa C. y Rojas-Bracho L. (2006). Personal PM2.5 and CO Exposures and Heart Rate Variability in Subjects with Known Ischemic Heart Disease in Mexico City. Journal of Exposure Science & Environmental Epidemiology 16(2): 131–37. DOI: 10.1038/sj.jea.7500453
SEDEMA (2018). Bases de datos - Red Automática de Monitoreo Atmosférico (RAMA) . Secretaria Del Medio Ambiente. [en linea] http://www.aire.cdmx.gob.mx/default.php?opc=%27aKBh%27. 12/05/2020
Shenghui G., Yangjun W., Yongxiang H. Quan Z., Zhiming L., Xiang S. y Yulu Liu. (2016). Spatial Statistics of Atmospheric Particulate Matter in China. Atmospheric Environment 134: 162–67. DOI: 10.1016/j.atmosenv.2016.03.052
Shi Kai, Chun-qiong L., Nan-shan A., y Xiao-hong Z. (2008). Using Three Methods to Investigate Time-Scaling Properties in Air Pollution Indexes Time Series. Nonlinear Analysis: Real World Applications 9(2): 693–707. DOI: 10.1016/j.nonrwa.2007.06.003
Sreenivasan, K. R., y Stolovitzky G. (1995). Turbulent Cascades. Journal of Statistical Physics 78(1–2): 311–33. DOI: 10.1007/BF02183351
Valdés-Parada F. J., Varela J. R:, y Alvarez-Ramirez J. (2012). Upscaling Pollutant Dispersion in the Mexico City Metropolitan Area. Physica A: Statistical Mechanics and its Applications 391(3): 606–15. DOI: 10.1016/j.physa.2011.08.017
Windsor H. L. y Toumi R. (2001). Scaling and Persistence of UK Pollution. Atmospheric Environment 35(27): 4545–56. DOI: 10.1016/S1352-2310(01)00208-4
Ying-Hui S., Gao-Feng G., Zhi-Qiang J., Wei-Xing Z. y Sornette D. (2012). “Comparing the Performance of FA, DFA and DMA Using Different Synthetic Long-Range Correlated Time Series.” Scientific Reports 2(1): 835. DOI: 10.1038/srep00835
Zhongfei C., Barros C. P. y Gil-Alana L. A. (2016). The Persistence of Air Pollution in Four Mega-Cities of China. Habitat International 56: 103–8. DOI: 10.1016/j.habitatint.2016.05.004