Persistent Fluctuations Associated with the O3 Ozone Concentration Index in Mexico City

Persistent behavior in the maximum of O3 of the CDMX

Keywords: Structure function, fluctuation, Hurst, tropospheric ozone, statistical persistence

Abstract

In this work, to analyze the trend of fluctuations associated to maximum values of ozone’s concentration (MaxO3 ), the structure function of order q, Fq ( Δn ) , is used. The data are coming from six stations in the Automatic Atmospheric Monitoring Network database and span over a 20-year period, from 1998 to 2017. We found that O 3 fluctuations obey a power law behavior, F q ( Δn ) ∝ ( Δn )Hq , Hq =0.878 ±0.024 , Hq =0.757 ± 0.033 y Hq =0.531± 0.0535 , for q = 1, 2, 3, 4, 5, and Ozone’s concentration values O3 ≥ 100, 150 and 200 ppb respectively. Persistence it was also found in the analyzed time series with long-range correlations up to four decades for O3 ≥ 100, 150, while for O3 ≥ 200 ppb gets closer to randomness, i.e, the O3 pollutant is not dispersing efficiently but contributes to this persistence behavior at least for Max O3 ≥ 100, 150 ppb in the area of the six monitoring stations.

Downloads

Download data is not yet available.

References

Balankin A. S. y Morales D. (2005). Anomalous Roughness of Turbulent Interfaces with System Size Dependent Local Roughness Exponent. Physics Letters A 339(1–2): 23–32. DOI: 10.1016/j.physleta.2005.02.064

Barabási A. y Vicsek T. (1991). MultifractalitBalankin A. S. y Morales D. (2005). Anomalous Roughness of Turbulent Interfaces with System Size Dependent Local Roughness Exponent. Physics Letters A 339(1–2): 23–32. DOI: 10.1016/j.physleta.2005.02.064y of Self-Affine Fractals. Physical Review A 44(4): 2730–33. DOI: 10.1103/PhysRevA.44.2730

Bell M. L., Devra L. D., Gouveia N., Borja-Aburto V. H. y Cifuentes L. A. (2006). The Avoidable Health Effects of Air Pollution in Three Latin American Cities: Santiago, São Paulo, and Mexico City. Environmental Research 100(3): 431–40. DOI: 10.1016/j.envres.2005.08.002

Birnir B. (2013). The Kolmogorov–Obukhov Statistical Theory of Turbulence. Journal 208 of Nonlinear Science 23(4): 657–88. DOI: 10.1007/s00332-012-9164-z

Bon D. M., Ulbrich I. M., y de Gouw J. A. (2011). Measurements of Volatile Organic Compounds at a Suburban Ground Site (T1) in Mexico Mity during the Milagro 2006 Campaign: Measurement Comparison, Emission Ratios, and Source Attribution. Atmospheric Chemistry and Physics 11((MILAGRO/INTEX-B 2006)): 2399–2421. DOI: 10.5194/acp-11-2399-2011

Chelani, A. B. (2009). Statistical Persistence Analysis of Hourly Ground Level Ozone Concentrations in Delhi. Atmospheric Research 92(2): 244–50. DOI: 10.1016/j.atmosres.2008.12.001

Frisch U. (1995). Turbulence: The Legacy of A.N. Kolmogorov. 1a ed. Cambridge University Press. UK, 312 pp. DOI: 10.1017/CBO9781139170666

Kolmogorov A. N. (1991). The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 434(1890): 9–13. DOI: 10.1098/rspa.1991.0075

Kun H., Plamen I., Zhi C., Carpena P. y Stanley E. H. (2001). Effect of Trends on Detrended Fluctuation Analysis. Physical Review E 64(1): 011114. DOI: 10.1103/PhysRevE.64.011114

Lei W., de Foy B., Zavala M., Volkamer R., y Molina L. T.et al. (2007). Characterizing Ozone Production in the Mexico City Metropolitan Area: A Case Study Using a Chemical Transport Model. Atmospheric Chemistry and Physics 7(5): 1347–66. DOI: 10.5194/acp-7-1347-2007

Lei W., Li G., y Molina L. (2012). Modeling the Impacts of Biomass Burning on Air Quality in and around Mexico City. Atmospheric Chemistry and Physics Discussions 12(9): 22891–943. DOI: 10.5194/acpd-12-22891-2012

Li G., Lei W., Zavala M., Volkamer R., Dusanter S., Stevens P. y Molina T. (2010). Impacts of HONO Sources on the Photochemistry in Mexico City during the MCMA-2006/MILAGO Campaign. Atmospheric Chemistry and Physics Discussions 10(2): 4143–88. DOI: 10.5194/acpd-10-4143-2010

Loomis D. P., Borja-Aburto V. H. Bangdiwala S. I. y Shy C.M. (1996). Ozone Exposure and Daily Mortality in Mexico City: A Time-Teries Analysis. Health Effects Institute. Research Report.

Malcai O., Lidar D. A., Biham O. y Avnir D. (1997). Scaling Range and Cutoffs in Empirical Fractals. Physical Review E 56(3): 2817–28. DOI: 10.1103/PhysRevE.56.2817

Mandelbrot B. 1(997). Fractals and Scaling in Finance. New York, 1a ed. NY: Springer. New York, 551 pp. DOI: 10.1007/978-1-4757-2763-0

Meakin P. (1998). Fractals, Scaling, and Growth Far from Equilibrium. Cambridge University Press. Cambridge, U.K. , 634 pp. DOI: 10.1002/(SICI)1099-1204(199911/12)12:6<493::AID-JNM346>3.0.CO;2-7

Meraz M., Rodriguez E., Fermat R., Echeverria J.C. y Alvarez Ramirez J. (2015). Statistical Persistence of Air Pollutants (O3, SO2, NO2 and PM10) in Mexico City. Physica A: Statistical Mechanics and its Applications 427: 202–17. DOI: 10.1016/j.physa.2015.02.009

OECD (2012). OECD Environmental Outlook to 2050: The Consequences of Inaction. OECD, 353 pp. DOI: 10.1787/9789264122246-en

Orta-García S, Peréz-Vázquez F., Gonzalez-Vega C., Varela-Silva J., Hernández-González L., y Pérez-Maldonado I. (2014). Concentrations of Persistent Organic Pollutants (POPs) in Human Blood Samples from Mexico City, Mexico. Science of The Total Environment 472: 496–501. DOI: 10.1016/j.scitotenv.2013.11.059

Peitgen H. O., Jürgens H, y Saupe D. (2012). Chaos and Fractals: New Frontiers of Science. 2a ed. Springer. New York, 904 pp

Plocoste T., Calif R., y Jacoby-Koaly S. (2017). Temporal Multiscaling Characteristics of Particulate Matter P M 10 and Ground-Level Ozone O3 Concentrations in Caribbean Region. Atmospheric Environment 169: 22–35. DOI: 10.1016/j.atmosenv.2017.08.068

Riojas-Rodríguez H., Escamilla-Cejudo J.A., González-Hermosillo J.A., Téllez-Rojo M.M., Vallejo M, Santos-Burgoa C. y Rojas-Bracho L. (2006). Personal PM2.5 and CO Exposures and Heart Rate Variability in Subjects with Known Ischemic Heart Disease in Mexico City. Journal of Exposure Science & Environmental Epidemiology 16(2): 131–37. DOI: 10.1038/sj.jea.7500453

SEDEMA (2018). Bases de datos - Red Automática de Monitoreo Atmosférico (RAMA) . Secretaria Del Medio Ambiente. [en linea] http://www.aire.cdmx.gob.mx/default.php?opc=%27aKBh%27. 12/05/2020

Shenghui G., Yangjun W., Yongxiang H. Quan Z., Zhiming L., Xiang S. y Yulu Liu. (2016). Spatial Statistics of Atmospheric Particulate Matter in China. Atmospheric Environment 134: 162–67. DOI: 10.1016/j.atmosenv.2016.03.052

Shi Kai, Chun-qiong L., Nan-shan A., y Xiao-hong Z. (2008). Using Three Methods to Investigate Time-Scaling Properties in Air Pollution Indexes Time Series. Nonlinear Analysis: Real World Applications 9(2): 693–707. DOI: 10.1016/j.nonrwa.2007.06.003

Sreenivasan, K. R., y Stolovitzky G. (1995). Turbulent Cascades. Journal of Statistical Physics 78(1–2): 311–33. DOI: 10.1007/BF02183351

Valdés-Parada F. J., Varela J. R:, y Alvarez-Ramirez J. (2012). Upscaling Pollutant Dispersion in the Mexico City Metropolitan Area. Physica A: Statistical Mechanics and its Applications 391(3): 606–15. DOI: 10.1016/j.physa.2011.08.017

Windsor H. L. y Toumi R. (2001). Scaling and Persistence of UK Pollution. Atmospheric Environment 35(27): 4545–56. DOI: 10.1016/S1352-2310(01)00208-4

Ying-Hui S., Gao-Feng G., Zhi-Qiang J., Wei-Xing Z. y Sornette D. (2012). “Comparing the Performance of FA, DFA and DMA Using Different Synthetic Long-Range Correlated Time Series.” Scientific Reports 2(1): 835. DOI: 10.1038/srep00835

Zhongfei C., Barros C. P. y Gil-Alana L. A. (2016). The Persistence of Air Pollution in Four Mega-Cities of China. Habitat International 56: 103–8. DOI: 10.1016/j.habitatint.2016.05.004

Published
2022-07-05
How to Cite
García Otamendi, E. I., & Matias Gutierres, S. (2022). Persistent Fluctuations Associated with the O3 Ozone Concentration Index in Mexico City. Boletín Científico INVESTIGIUM De La Escuela Superior De Tizayuca, 8(15), 29-35. https://doi.org/10.29057/est.v8i15.8786