Sistema electrónico de bajo costo para monitoreo de déficit de presión de vapor y luz solar utilizando una tarjeta Raspberry Pi Pico

Keywords: Monitoring, microcontroller, low cost, vapor pressure, deficit

Abstract

The development of an electronic system for monitoring atmospheric conditions in an experimental greenhouse is presented. The core of the system consists of a 2021 recently launched Raspberry Pi Pico board, programmed with the Micropython language. A DHT22 module and a light-dependent resistor were selected as sunlight sensors for monitoring the environmental conditions. The system performance test was carried out for 3 days during the germination stage of 6 red salad bowl lettuce and 6 Amaranthus seeds; agricultural foam was selected as substrate using the manual drip irrigation method. Temperature, relative humidity, vapor pressure deficit, and sunlight sensor readings data were captured, recorded, and accessed using the Thonny IDE in a text file with columnar format stored in the RP2040 microcontroller memory. The total cost of the electronic system used to design the system was around $US 11, which makes it an attractive alternative for academic activities and research projects.

Downloads

Download data is not yet available.

References

Adams, J. (2021, January 21). Meet Raspberry Silicon: Raspberry Pi Pico now on sale at $4. Raspberry Pi. https://www.raspberrypi.com/news/raspberry-pi-silicon-pico-now-on-sale/

Alduchov, O. A., & Eskridge, R. E. (1996). Improved Magnus Form Approximation of Saturation Vapor Pressure. Journal of Applied Meteorology and Climatology, 35(4), 601–609. https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2

De Anda, J., & Shear, H. (2017). Potential of Vertical Hydroponic Agriculture in Mexico. Sustainability, 9(1). https://doi.org/10.3390/su9010140

Eduardo Vergara Pérez, Alfredo Viuda López, & Israel Acuña Galván. (2018). Sistema de monitoreo y control semiautomático para la implementación de un huerto urbano comunitario mediante la técnica de organopónia. Boletín Científico INVESTIGIUM de La Escuela Superior de Tizayuca, 4(7). https://doi.org/10.29057/est.v4i7.3361

Gates, R. S., Zolnier, S., & Buxton, J. (1998). Vapor Pressure Deficit Control Strategies for Plant Production. IFAC Workshop on Control Applications in Post-Harvest and Processing Technology (CAEA’98), Athens, Greece, 15-17 June 1998, 31(12), 271–276. https://doi.org/10.1016/S1474-6670(17)36076-7

González-Buesa, J., & Salvador, M. L. (2019). An Arduino-based low cost device for the measurement of the respiration rates of fruits and vegetables. Computers and Electronics in Agriculture, 162, 14–20. https://doi.org/10.1016/j.compag.2019.03.029

Hubbard, B. R., & Pearce, J. M. (2020). Open-Source Digitally Replicable Lab-Grade Scales. Instruments, 4(3). https://doi.org/10.3390/instruments4030018

Knörig, A., Wettach, R., & Cohen, J. (2009). Fritzing: A Tool for Advancing Electronic Prototyping for Designers. Proceedings of the 3rd International Conference on Tangible and Embedded Interaction, 351–358. https://doi.org/10.1145/1517664.1517735

Orsini, F., Kahane, R., Nono-Womdim, R., & Gianquinto, G. (2013). Urban agriculture in the developing world: A review. Agronomy for Sustainable Development, 33(4), 695–720. https://doi.org/10.1007/s13593-013-0143-z

Pearce, J. M. (2020). Economic savings for scientific free and open source technology: A review. HardwareX, 8, e00139. https://doi.org/10.1016/j.ohx.2020.e00139

Perron, D. (2022). PicoDHT22 [Python]. https://github.com/danjperron/PicoDHT22 (Original work published 2021)

Ravindran, S. (2020). How DIY technologies are democratizing science. Nature, 587(7834), 509–511. https://doi.org/10.1038/d41586-020-03193-5

Shamshiri, R., Kalantari, F., Ting, K. C., Thorp, K. R., Hameed, I. A., Weltzien, C., Ahmad, D., & Shad, Z. M. (2018). Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. International Journal of Agricultural and Biological Engineering, 11(1), 1–22. https://doi.org/10.25165/ijabe.v11i1.3210

Zhang, Z., Zhu, H., Guler, H., & Shen, Y. (2019). Improved premixing in-line injection system for variable-rate orchard sprayers with Arduino platform. Computers and Electronics in Agriculture, 162, 389–396. https://doi.org/10.1016/j.compag.2019.04.023

Published
2023-01-05
How to Cite
Serrano-Pérez, E., & Sandoval-Villa, M. (2023). Sistema electrónico de bajo costo para monitoreo de déficit de presión de vapor y luz solar utilizando una tarjeta Raspberry Pi Pico. Boletín Científico INVESTIGIUM De La Escuela Superior De Tizayuca, 8(16), 7-11. https://doi.org/10.29057/est.v8i16.9651