Evaluación de la cinética de crecimiento de las capas de Fe2B formadas sobre la superficie del acero ASTM A307 a través de dos modelos de difusión

Palabras clave: Borurización, boruro de hierro, cinética, energías de activación, modelos de difusión

Resumen

En este estudio, implementamos dos modelos sencillos para simular el crecimiento de la capa de Fe2B en el acero ASTM A307 mediante boruración. El primer modelo consideró la difusión de boro en estado estacionario, mientras que el segundo modelo incorporó efectos de régimen transitorio. En el modelo de estado estacionario, el perfil de concentración de boro dentro de la capa de Fe2B mostró linealidad. Al correlacionar el potencial químico del boro con el flujo de masa hacia el interior en la interfaz (Fe2B/sustrato), confirmamos la naturaleza parabólica del crecimiento de la capa. Ambos modelos se emplearon para determinar las energías de activación del boro, arrojando el mismo valor de aproximadamente 164 kJ·mol–1. La validación experimental de los dos modelos se llevó a cabo bajo dos condiciones adicionales de borurización (1323 K durante 1.5 y 2 h). Finalmente, los espesores de capa simulados coincidieron con los valores experimentales.

Descargas

La descarga de datos todavía no está disponible.

Citas

Arslan, M., Kagan Coskun, O., Karimzadehkhoei, M., Kartal Sireli, G., Timur, S., (2022). Evaluation of pulse current integrated CRTD–Bor for boron diffusion in low carbon steel, Mater. Lett., 3081, 131299. https://doi.org/10.1016/j.matlet.2021.131299

Arslan–Kaba, M., Karimzadehkhoei, M., Keddam, M., Timur, S., Kartal Sireli, G., (2023). An Experimental and Modelling Study on Pulse Current Integrated CRTD–Bor Process, Materials Chemistry and Physics, Vol.302, 127735. https://doi.org/10.1016/j.matchemphys.2023.127735

Belaid, M., Fares, M.L., Assalla, O., Boukari, F., (2022). Surface characterization of a modified cold work tool steel treated by powder-pack boronizing, Materwiss Werksttech, 53, 15–38, https://doi.org/10.1002/mawe.202100117

Brakman, C., Gommers, A., & Mittemeijer, E. (1989). Boriding of Fe and Fe–C, Fe–Cr, and Fe–Ni alloys; Boride-layer growth kinetics. Journal of Materials Research, 4(6). https://doi.org/10.1557/JMR.1989.1354

Campos–Silva, I., Ortiz–Domínguez, M., VillaVelázquez, C., Escobar, R., López, N., (2007). Growth kinetics of boride layers: a modified approach, Defect Diffus. Forum, 272, 79–86. https://doi.org/10.4028/www.scientific.net/DDF.272.79

Campos, I., Islas, M., González, E., Ponce, P., Ramírez, G., (2006). Use of fuzzy logic for modeling the growth of Fe2B boride layers during boronizing, Surf. Coat. Technol., 201, 2717–2723. https://doi.org/10.1016/j.surfcoat.2006.05.016

Campos, I. , Oseguera, J. , Figueroa, U. , Garcı́a, J. A. , Bautista, O. , Kelemenis, G., (2003). Kinetic study of boron diffusion in the paste-boriding process, Mater. Sci. Eng. A, 352, 261–265. https://doi.org/10.1016/S0921-5093(02)00910-3

Gunes, I., Ulker, S., Taktak, S., (2013). Kinetics of plasma paste boronized AISI 8620 steel in borax paste mixtures, Prot. Met. Phys. Chem. S., 49, 567–573. https://doi.org/10.1134/S2070205113050122

Hasan, R., Zhong Li Liew, J., Ab Halim, N., (2019). The effect of groove shape on activation energy of powder pack boronizing in mild steel, Jurnal Tribologi, 22; 123–137. https://jurnaltribologi.mytribos.org/v22/JT-22-123-137.pdf

Hernández-Sánchez E. y Velázquez, J. C., (2018). Kinetics of growth of iron boride layers on a low-carbon steel surface, Laboratory Unit Operations and Experimental Methods in Chemical Engineering, https://doi.org/10.5772/intechopen.73592

Jain, V. , Sundararajan, G. , (2002). Influence of the pack thickness of the boronizing mixture on the boriding of steel, Surf. Coat. Technol., 149, 21–26. https://doi.org/10.1016/S0257-8972(01)01385-8

Jiang Y, Bao Y, Wang M., (2017). Kinetic Analysis of Additive on Plasma Electrolytic Boriding, Coatingsm; 7(5):61. https://doi.org/10.3390/coatings7050061

Kartal, G., Eryilmaz, O. L., Krumdick, G., Erdemir, A., Timur, S., (2011). Kinetics of electrochemical boriding of low carbon steel, Appl. Surf. Sci., 257, 6928–6934. https://doi.org/10.1016/j.apsusc.2011.03.034

Koga, N., Tanahara, K., Umezawa, O., (2022). Deformation Structure Around a Crack in γ′–Fe4N Layer of Nitrided Extra–Low-Carbon Steel Subjected to Cyclic Tensile Test, Metall Mater Trans A, 53, 1150–1155. https://doi.org/10.1007/s11661-022-06607-3

Kulka, M., (2019). Trends in thermochemical techniques of boriding, in: Current Trends in Boriding, Engineering Materials, Springer, Cham, Switzerland, 1 p. https://doi.org/10.1007/978-3-030-06782-3

Kulka, M., Makuch, N., Piasecki, A., (2017). Nanomechanical characterization and fracture toughness of FeB and Fe2B iron borides produced by gas boriding of Armco iron, Surf. Coat. Technol., 325, 2017, 515–532. https://doi.org/10.1016/j.surfcoat.2017.07.020

Kunst, H. and Schaaber, O., (1967), Beobachtungen beim oberflaechenborieren von Stahl, HTM Haerterei Technische Mitteilungen, vol. 22, no. 1, pp. 1–25, https://doi.org/10.1007/978-3-642-52224-6_7

Morgado–González, I., Ortiz–Domínguez, M., Keddam, M., (2022). Characterization of Fe2B layers on ASTM A1011 steel and modeling of boron diffusion, Mater. Testing, 64, 55. https://doi.org/10.1515/mt-2021-2007

Okamoto H., (2004). B-Fe (boron-iron), J. Ph. Equilibria Diffus., 25, 297-298. https://doi.org/10.1007/s11669-004-0128-3

Ortiz–Domínguez, M., Campos–Silva, I., Hernández–Sánchez, E., Nava–Sánchez, J., Martínez–Trinidad, L., Jiménez-Reyes, M.Y., Damián–Mejía, O., (2011). Estimation of Fe2B growth on low-carbon steel based on two diffusion models, Int. J. Mater. Res., 102, 429–434. https://doi.org/10.3139/146.110491

Ortiz–Domínguez, M., Gomez–Vargas, O. A., Ares de Parga, G., Torres–Santiago, G., Velazquez–Mancilla, R., Castellanos–Escamilla, V. A., Mendoza–Camargo, J. and Trujillo–Sanchez, R., (2019). Modeling of the Growth Kinetics of Boride Layers in Powder-Pack Borided ASTM A36 Steel Based on Two Different Approaches, Advances in Materials Science and Engineering, Article ID 5985617, 12 pages. https://doi.org/10.1155/2019/5985617

Palombarini G., Carbucicchio M., (1987). Growth of boride coatings on iron, Journal of Materials Science Letters, 6(4): 415–416. https://doi.org/10.1007/BF01756781

Press, W.H.; Flannery, B.P.; Teukolsky, S.A. (1989). Numerical Recipes in Pascal: The Art of Scientific Computing; Cambridge University Press: Cambridge, UK https://dl.acm.org/doi/10.5555/73925

Ramdan, R. D., Takaki, T., Yashiro, K., Tomita, Y., (2010). The Effects of Structure Orientation on the Growth of Fe2B Boride by Multi-Phase–Field Simulation, Mater. Trans., 51, 62–67. https://doi.org/10.2320/matertrans.M2009227

Ruiz–Trabolsi, P. A., Velázquez, J. C., Orozco–Álvarez, C., Carrera–Espinoza, R., Yescas–Hernández, J. A., González–Arévalo, N. E., Hernández–Sánchez, E., (2021). Kinetics of the boride layers obtained on AISI 1018 steel by considering the amount of matter involved, Coatings, vol. 11, no. 259, pp. 1–17. https://doi.org/10.3390/coatings11020259.

Sen S., Sen, U., Bindal, C., (2005). An approach to kinetic study of borided steels, Surf. Coat. Technol., 191, 274–285. https://doi.org/10.1016/j.surfcoat.2004.03.040

Sikorski, K., Wierzchoń, T., Bieliński, P., (1998). X-ray microanalysis and properties of multicomponent plasma-borided layers on steels, J. Mater. Sci., 33, 811–815, https://doi.org/10.1023/A:1004322719560

Smol'nikov, E. A. y Sarmanova, L. M., (1982). Study of the possibility of liquid boriding of high-speed steels, Met. Sci. Heat Treat., 24, 785–788. https://doi.org/10.1007/BF00774735

Su Z. G., Lv, X. X., An, J., Yang, Y., Sun, S., (2012). Role of RE Element Nd on Boronizing Kinetics of Steels, J. Mater. Eng. Perform. 21, 1337–1345. https://doi.org/10.1007/s11665-011-0053-7

Türkmen, I. y Yalamaç E., (2021). Effect of Alternative Boronizing Mixtures on Boride Layer and Tribological Behaviour of Boronized SAE 1020 Steel, Met. Mater. Int., https://doi.org/10.1007/s12540-021-00987–8

Türkmen, İ., Yalamaç, E., Keddam, M., (2019). Investigation of tribological behaviour and diffusion model of Fe2B layer formed by pack-boriding on SAE 1020 steel, Surf. Coat. Technol, 377, 124888. https://doi.org/10.1016/j.surfcoat.2019.08.017

VillaVelázquez–Mendoza, C.I., Rodríguez-Mendoza, J.L., Ibarra–Galván, V., Hodgkins, R.P., López–Valdivieso, A., Serrato–Palacios, L.L., Leal-Cruz, A.L. and Ibarra-Junquera, V., (2014). Effect of substrate roughness, time and temperature on the processing of iron boride coatings: experimental and statistical approaches, Int. J. Surf. Sci. Eng., 8, 71–91. https://doi.org/10.1504/IJSURFSE.2014.059315

Publicado
2024-01-05
Cómo citar
Ortiz-Domínguez, M., Cruz-Avilés, A., González-Ortega, E. B., Muñoz-Sánchez, Y., Damián-Mejía, O., & Fernández-De Dios, L. D. (2024). Evaluación de la cinética de crecimiento de las capas de Fe2B formadas sobre la superficie del acero ASTM A307 a través de dos modelos de difusión. Ingenio Y Conciencia Boletín Científico De La Escuela Superior Ciudad Sahagún, 11(21), 1-16. https://doi.org/10.29057/escs.v11i21.11780

Artículos más leídos del mismo autor/a

1 2 3 4 > >>