Análisis bibliométrico: Carburización
DOI:
https://doi.org/10.29057/escs.v13i25.16307Palabras clave:
Carburizing, Scopus, Bibliometrix, Tall AIResumen
El tratamiento termoquímico de carburización es un proceso de endurecimiento superficial empleado para aumentar la resistencia al desgaste en diferentes aceros y aleaciones ferrosas. Este artículo presenta una revisión bibliográfica sobre el tema de la literatura publicada entre 1967 y 2024, para lo cual se analizaron los metadatos de 4590 publicaciones extraídos de Scopus. Se realizó un análisis estadístico de los datos en el entorno R mediante las plataformas Bibliometrix, Biblioshiny y TALL AI las cuales permiten estudiar el desarrollo de las líneas de investigación mediante indicadores bibliométricos. Se observó un crecimiento anual del 6.6 %, destacando China (1485 artículos), India y EE. UU. como países más productivos, y J. G. Li como autor más prolífico (43 artículos). Las revistas líderes fueron Materials Science Forum, JMRT y Surface and Coatings Technology. El análisis temático asistido por inteligencia artificial permitió identificar los principales tópicos abordados en la literatura, con énfasis en técnicas industriales, propiedades tribológicas y modelado computacional del proceso, temas que se tomaron como referencia para identificar las tendencias actuales de investigación. Los resultados ofrecen una visión integral del desarrollo científico y tecnológico de la carburización, sus aplicaciones industriales y las tendencias emergentes que orientan la investigación actual.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Alias, S. K., Abdullah, B., Jaffar, A., Latip, S. A., Kasolang, S., Izham, M. F., & Ghani, M. A. A. (2013). Mechanical Properties of Paste Carburized ASTM A516 Steel. INTERNATIONAL TRIBOLOGY CONFERENCE MALAYSIA 2013, 68, 525–530. https://doi.org/10.1016/j.proeng.2013.12.216
Ånmark, N., & Björk, T. (2016). Effects of the composition of Ca-rich inclusions on tool wear mechanisms during the hard-turning of steels for transmission components. Wear, 368–369, 173–182. https://doi.org/10.1016/j.wear.2016.09.016
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of informetrics, 11(4), 959–975.
Bensely, A., Prabhakaran, A., Mohan Lal, D., & Nagarajan, G. (2005). Enhancing the wear resistance of case carburized steel (En 353) by cryogenic treatment. Cryogenics, 45(12), 747–754. https://doi.org/10.1016/j.cryogenics.2005.10.004
Cavaliere, P., Zavarise, G., & Perillo, M. (2009). Modeling of the carburizing and nitriding processes. Computational Materials Science, 46(1), 26–35. https://doi.org/10.1016/j.commatsci.2009.01.024
Cermak, J., & Kral, L. (2014). Carbon diffusion in carbon-supersaturated ferrite and austenite. Journal of Alloys and Compounds, 586, 129–135. https://doi.org/10.1016/j.jallcom.2013.10.058
Chan, K. J., & Singh, P. M. (2020). Carburization of metals by a chemical mechanism of carbon transport through molten fluoride salts. Journal of Nuclear Materials, 539, 152307. https://doi.org/10.1016/j.jnucmat.2020.152307
de Souza Lamim, T., Anselmo, L. M., Bendo, T., Bernardelli, E. A., Binder, C., Nelmo Klein, A., & Biasoli de Mello, J. D. (2022). Effect of low-temperature plasma carburizing on surface topography, mechanical and tribological properties of sintered iron and nitrided sintered iron. Tribology International, 168, 107452. https://doi.org/10.1016/j.triboint.2022.107452
Dossett, J. L., & Totten, G. E. (Eds.). (2013). Pack Carburizing. En Steel Heat Treating Fundamentals and Processes (Vol. 4A, p. 0). ASM International. https://doi.org/10.31399/asm.hb.v04a.a0005765
Farivar, H., Deepu, M. J., Hans, M., Phanikumar, G., Bleck, W., & Prahl, U. (2019). Influence of post-carburizing heat treatment on the core microstructural evolution and the resulting mechanical properties in case-hardened steel components. Materials Science and Engineering: A, 744, 778–789. https://doi.org/10.1016/j.msea.2018.12.061
Guo, J., Deng, X., Wang, H., Zhou, L., Xu, Y., & Ju, D. (2021). Modeling and Simulation of Vacuum Low Pressure Carburizing Process in Gear Steel. Coatings, 11(8). https://doi.org/10.3390/coatings11081003
Hasan, M. Z., Hussein, A. A., Hasan, A. S., & Ali, O. M. (2020). Improvement of AISI 1018 Carbon Steel Gr 1018 mechanical properties by liquid carburizing in salt bath. Materials Today: Proceedings, 20, 512–516.
Hassan, K. S. (2015). Comparative of wear resistance of low carbon steel pack carburizing using different media. International Journal of Engineering & Technology, 4(1), 71.
Höglund, L., & Ågren, J. (2010). Simulation of Carbon Diffusion in Steel Driven by a Temperature Gradient. Journal of Phase Equilibria and Diffusion, 31(3), 212–215. https://doi.org/10.1007/s11669-010-9673-0
Holmberg, K., & Erdemir, A. (2017). Influence of tribology on global energy consumption, costs and emissions. Friction, 5(3), 263–284. https://doi.org/10.1007/s40544-017-0183-5
Honghao Jia, Dongying Ju, & Jianting Cao. (2023). Machine learning based optimization method for vacuum carburizing process and its application. Journal of Materials Informatics, 3(2), 9. https://doi.org/10.20517/jmi.2022.43
Hosseini, S. R. E., & Li, Z. (2016). Pack carburizing: Characteristics, microstructure, and modeling. Encyclopedia of Iron, Steel, and Their Alloys (Online Version), 1–24.
Iżowski, B., Wojtyczka, A., & Motyka, M. (2023). Numerical Simulation of Low-Pressure Carburizing and Gas Quenching for Pyrowear 53 Steel. Metals, 13(2). https://doi.org/10.3390/met13020371
Kwietniewski, C. E. F., Tentardini, E. K., & Totten, G. E. (2013). Carburizing and Carbonitriding. En Q. J. Wang & Y.-W. Chung (Eds.), Encyclopedia of Tribology (pp. 298–306). Springer US. https://doi.org/10.1007/978-0-387-92897-5_722
Leipner, H. S., Lorenz, D., Zeckzer, A., Lei, H., & Grau, P. (2001). Nanoindentation pop-in effect in semiconductors. International Conference on Defects in Semiconductors, 308–310, 446–449. https://doi.org/10.1016/S0921-4526(01)00718-9
Liang, R., Wang, Z., Yang, S., & Chen, W. (2021). Study on hardness prediction and parameter optimization for carburizing and quenching: An approach based on FEM, ANN and GA. Materials Research Express, 8(11), 116501.
Liscic, B., Tensi, H. M., & Luty, W. (2013). Theory and technology of quenching: A handbook. Springer Science & Business Media.
Pohjonen, A., Somani, M., & Porter, D. (2018). Modelling of austenite transformation along arbitrary cooling paths. Computational Materials Science, 150, 244–251. https://doi.org/10.1016/j.commatsci.2018.03.052
Qian, L., Li, M., Zhou, Z., Yang, H., & Shi, X. (2005). Comparison of nano-indentation hardness to microhardness. Surface and Coatings Technology, 195(2), 264–271. https://doi.org/10.1016/j.surfcoat.2004.07.108
Ren, S., Chen, Y., Ye, X.-X., Jiang, L., Yan, S., Liang, J., Yang, X., Leng, B., Li, Z., Chen, Z., & Dai, Z. (2021). Corrosion behavior of carburized 316 stainless steel in molten chloride salts. Solar Energy, 223, 1–10. https://doi.org/10.1016/j.solener.2021.05.057
Salama, H., Shchyglo, O., & Steinbach, I. (2025). The interplay between the martensitic transformation rate and the rate of plastic relaxation during martensitic transformation in low-carbon steel, a phase-field study. npj Computational Materials, 11(1), 43.
Song, T., Liu, Q., Liu, S., Yang, T., Li, Q., Xia, C., & Zhang, X. (2024). Wear and corrosion resistance behavior of Zr-2.5Nb by pack carburizing and boronizing. Surface and Coatings Technology, 482, 130720. https://doi.org/10.1016/j.surfcoat.2024.130720
Vellanki, C., Choudhury, S., Kumar, S., Vimson, G., & Paul, G. (2022). Influence of Lubrication on the Friction and Wear Characteristics of Low Carbon Steel under Sliding Reciprocation Conditions. IOP Conference Series: Materials Science and Engineering, 1248(1), 012033. https://doi.org/10.1088/1757-899X/1248/1/012033
Wallis, R. A. (2010). Modeling of Quenching, Residual-Stress Formation, and Quench Cracking. En D. U. Furrer & S. L. Semiatin (Eds.), Metals Process Simulation (Vol. 22B, p. 0). ASM International. https://doi.org/10.31399/asm.hb.v22b.a0005530
Yerokhin, A., Nie, X., Leyland, A., Matthews, A., & Dowey, S. (1999). Plasma electrolysis for surface engineering. Surface and coatings technology, 122(2–3), 73–93.
Yin, L., Ma, X., Tang, G., Fu, Z., Yang, S., Wang, T., Wang, L., & Li, L. (2019). Characterization of carburized 14Cr14Co13Mo4 stainless steel by low pressure carburizing. Surface and Coatings Technology, 358, 654–660. https://doi.org/10.1016/j.surfcoat.2018.11.090
Zhang, X., Tang, J., & Zhang, X. (2017). An optimized hardness model for carburizing-quenching of low carbon alloy steel. Journal of Central South University, 24(1), 9–16.
Zhao, M., Ma, Y., Zhang, Y., Liu, X., Sun, H., Liang, R., Yin, H., & Wang, D. (2023). An efficient salt-thermo-carburizing method to prepare titanium carbide coating. Surface and Coatings Technology, 465, 129546. https://doi.org/10.1016/j.surfcoat.2023.129546
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Angel J. Morales Robles, Martín Ortiz Dominguez, Edgar Cardoso Legorreta, Arturo Cruz Avilés, Quirino Estrada

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.









