Análisis bibliométrico: TiN
DOI:
https://doi.org/10.29057/escs.v13i25.16321Palabras clave:
TiN, Bibliometrix, Bibloshiny, PVDResumen
En este trabajo se presenta la metodología y resultados del análisis de las publicaciones científicas registradas en la base de datos Scopus relacionada con el nitruro de titanio (TiN) en el periodo de 1979 y 2025. Con este fin se analizaron los metadatos de 1458 documentos extraídos de la base de datos Scopus mediante las herramientas estadísticas de Bibliometri y la interfaz Biblioshiny, que operan en el entorno de RStudio. Los resultados permiten examinar la evolución histórica de la producción académica, las tendencias de investigación y las redes de colaboración en el área. Además, los indicadores estadísticos muestran un crecimiento sostenido de la investigación con una tasa anual promedio de 8.1 %, una edad media de 12.3 años por documento y un promedio de 26.88 citas por publicación. La mayor parte de la producción corresponde a artículos de investigación (84 %), con una participación significativa de conferencias (13.7 %) y un número reducido de revisiones (1.6 %). Se identificaron 4361 autores, con predominio del trabajo colaborativo (4.61 coautores por artículo) y una colaboración internacional del 22.57 %. El análisis temático reveló líneas consolidadas en síntesis y caracterización de recubrimientos de TiN, así como áreas emergentes vinculadas con tribología, manufactura avanzada y sostenibilidad. En conjunto, este novedoso estudio proporciona una visión integral del desarrollo científico y tecnológico del TiN, subrayando su papel estratégico en la ingeniería de superficies y en la consolidación de recubrimientos funcionales de alto impacto industrial.Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Baptista, A., Silva, F., Porteiro, J., Míguez, J., & Pinto, G. (2018). Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands. Coatings, 8(11). https://doi.org/10.3390/coatings8110402
Colligon, J., & Vishnyakov, V. (2020). Thin films: Sputtering, PVD methods, and Applications. Surface and Interface Science: Volume 9: Applications of Surface Science I, 9, 1–55.
Deng, Y., Chen, W., Li, B., Wang, C., Kuang, T., & Li, Y. (2020). Physical vapor deposition technology for coated cutting tools: A review. Ceramics International, 46(11), 18373–18390.
Dong, L., & Srolovitz, D. J. (1999). Mechanism of texture development in ion-beam-assisted deposition. Applied physics letters, 75(4), 584–586.
Du, G. Y., Tan, Z., Liu, K., Chai, H., & Ba, D. C. (2012). Research on Damping Properties of TiN Coating Prepared with Arc Ion Plating. Applied Mechanics and Materials, 184–185, 1167–1170. https://doi.org/10.4028/www.scientific.net/AMM.184-185.1167
Elstner, F., Gautier, C., Moussaoui, H., Piot, O., & Machet, J. (1996). A comparative study of structure and residual stress in chromium nitride films deposited by vacuum arc evaporation, ion plating, and DC magnetron sputtering. physica status solidi (a), 158(2), 505–521.
Guglya, A., & Lyubchenko, E. (2018). Chapter 4—Ion-beam-assisted deposition of thin films. En A. Barhoum & A. S. H. Makhlouf (Eds.), Emerging Applications of Nanoparticles and Architecture Nanostructures (pp. 95–119). Elsevier. https://doi.org/10.1016/B978-0-323-51254-1.00004-X
Hirvonen, J. K. (2003). Ion beam assisted deposition. MRS Online Proceedings Library (OPL), 792, R12-5.
Huang, J.-H., Lin, C.-H., Ma, C.-H., & Chen, H. (2000). Low energy ion beam assisted deposition of TiN thin films on silicon. Scripta Materialia, 42(6), 573–579. https://doi.org/10.1016/S1359-6462(99)00393-0
Huang, M., Lin, G., Zhao, Y., Sun, C., Wen, L., & Dong, C. (2003). Macro-particle reduction mechanism in biased arc ion plating of TiN. Surface and Coatings Technology, 176(1), 109–114.
Hühne, R., Gärtner, R., Oswald, S., Schultz, L., & Holzapfel, B. (2011). Coated conductor architectures based on IBAD-TiN for high-Jc YBCO films. Physica C: Superconductivity and its Applications, 471(21–22), 966–969.
Iwata, K., Sakemi, T., Yamada, A., Fons, P., Awai, K., Yamamoto, T., Matsubara, M., Tampo, H., & Niki, S. (2003). Growth and electrical properties of ZnO thin films deposited by novel ion plating method. Thin Solid Films, 445(2), 274–277.
L. Malhotra, G., K. Sharma, S., Choudhuri, S., & K. Pal, A. (1978). Nucleation, Growth and Microstructure of Vapour Deposited Tin Film on NaCl Single Crystal Substrate. Journal of the Physical Society of Japan, 45(3), 930–935. https://doi.org/10.1143/JPSJ.45.930
Laing, K., Hampshire, J., Teer, D., & Chester, G. (1999). The effect of ion current density on the adhesion and structure of coatings deposited by magnetron sputter ion plating. Surface and Coatings Technology, 112(1–3), 177–180.
Lang, F., & Yu, Z. (2001). The corrosion resistance and wear resistance of thick TiN coatings deposited by arc ion plating. Surface and Coatings Technology, 145(1), 80–87. https://doi.org/10.1016/S0257-8972(01)01284-1
Liang, W., Ling, Y., Liu, K., Hu, Y., Yin, A., Zhu, F., Chen, L., & Zhang, Z. (2018). Corrosion resistance and mechanism of CeN, TiN and CeN/TiN bilayer composite film deposited by dual ion beam sputtering. Surface and Coatings Technology, 335, 280–287. https://doi.org/10.1016/j.surfcoat.2017.12.033
Logan, J. S. (1990). RF diode sputtering. Thin solid films, 188(2), 307–321.
Mattox, D. M. (2010). Handbook of physical vapor deposition (PVD) processing. William Andrew.
Mayrhofer, P., Kunc, F., Musil, J., & Mitterer, C. (2002). A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings. Thin solid films, 415(1–2), 151–159.
Nguyen, C. L. (2010). Surface properties and finishing of aluminium casting alloys.
Nimalan, T., & Begam, M. (2024). Physical and chemical methods: A review on the analysis of deposition parameters of thin film preparation methods. Int. J. Thin. Fil. Sci. Tec., 13, 59–66.
Nordin, M., Larsson, M., & Hogmark, S. (1999). Mechanical and tribological properties of multilayered PVD TiN/CrN. Wear, 232(2), 221–225.
Okamoto, H. (2013). N-Ti (Nitrogen-Titanium). Journal of Phase Equilibria and Diffusion, 34(2), 151–152. https://doi.org/10.1007/s11669-012-0153-6
Pinto, G., Silva, F. J. G., Porteiro, J., Míguez, J. L., Baptista, A., & Fernandes, L. (2018). A critical review on the numerical simulation related to Physical Vapour Deposition. 28th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM2018), June 11-14, 2018, Columbus, OH, USAGlobal Integration of Intelligent Manufacturing and Smart Industry for Good of Humanity, 17, 860–869. https://doi.org/10.1016/j.promfg.2018.10.138
Polcar, T., Martinez, R., Vítů, T., Kopecký, L., Rodriguez, R., & Cavaleiro, A. (2009). High temperature tribology of CrN and multilayered Cr/CrN coatings. Surface and Coatings Technology, 203(20), 3254–3259. https://doi.org/10.1016/j.surfcoat.2009.04.005
QIU, A., LIU, L., PANG, W., LU, X., & LI, C. (2011). Calculation of phase diagram of Ti-Ni-O system and application to deoxidation of TiNi alloy. Transactions of Nonferrous Metals Society of China, 21(8), 1808–1816. https://doi.org/10.1016/S1003-6326(11)60935-7
Ranjan, R., Allain, J. P., Hendricks, M. R., & Ruzic, D. N. (2001). Absolute sputtering yield of Ti/TiN by Ar+/N+ at 400–700 eV. Journal of Vacuum Science & Technology A, 19(3), 1004–1007. https://doi.org/10.1116/1.1362678
Roy, M. (2013). Surface engineering for enhanced performance against wear. Springer.
Sagás, J., Duarte, D., Irala, D., Fontana, L., & Rosa, T. (2011). Modeling reactive sputter deposition of titanium nitride in a triode magnetron sputtering system. Surface and Coatings Technology, 206(7), 1765–1770.
Shahidi, S., Moazzenchi, B., & Ghoranneviss, M. (2015). A review-application of physical vapor deposition (PVD) and related methods in the textile industry. The European Physical Journal Applied Physics, 71(3), 31302.
Sobol, O., Andreev, A., Stolbovoj, V., Grigor’ev, V., Volosova, S., Aleshin, S., & Gorban, V. (2011). Physical characteristics, structure and stress state of vacuum-arc TiN coating, deposition on the substrate when applying high-voltage pulse during the deposition; Mekhanicheskie kharakteristiki, struktura i napryazhennoe sostoyanie vakuumno-dugovykh TiN-pokrytij, osazhdennykh pri podache na podlozhku vysokovol’tnykh impul’sov v protsesse osazhdeniya. Voprosy Atomnoj Nauki i Tekhniki.
Sproul, W. D., Christie, D. J., & Carter, D. C. (2005). Control of reactive sputtering processes. Thin solid films, 491(1–2), 1–17.
von Fieandt, L., Larsson, T., Lindahl, E., Bäcke, O., & Boman, M. (2018). Chemical vapor deposition of TiN on transition metal substrates. Surface and Coatings Technology, 334, 373–383. https://doi.org/10.1016/j.surfcoat.2017.11.063
Wang, J., Mu, X., Wang, X., Wang, N., Ma, F., Liang, W., & Sun, M. (2018). The thermal and thermoelectric properties of in-plane C-BN hybrid structures and graphene/h-BN van der Waals heterostructures. Materials Today Physics, 5, 29–57.
Zhang, Q., Zhao, W., Wang, P., Wang, L., Xu, J., & Chu, P. (2003). Microstructure, morphology and their annealing behaviors of alumina films synthesized by ion beam assisted deposition. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 206, 357–361.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Angel Jesus Morales Robles, Martín Ortiz Dominguez, Edgar Cardoso Legorreta, José Luis Rodríguez Muñoz, Jorge Zuno Silva, Carlos Ernesto Borja Soto, Arturo Cruz Avilés

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.









