Programación de propiedades aplicadas a sistemas de refrigeración por absorción

Palabras clave: Propiedades, programación, ESS, ARS, COP, interpolación multiple

Resumen

El objetivo de este trabajo es desarrollar un modelo computacional que ayude a predecir las propiedades termodinámicas de la mezcla CaCl2-LiBr-LiNO3-H2O, las cuales sean utilizadas para el análisis y simulación de sistemas de refrigeración por absorción. El estudio está basado en la metodología de interpolación múltiple desarrollada en el software Engineering Equation Solver (EES) y los valores obtenidos son comparados con aquellos obtenidos experimentalmente. Los resultados muestran que el modelo desarrollado predice adecuadamente las propiedades de presión de vapor, entalpía específica y calor específico y los máximos porcentajes de desviación obtenidos son de 9.34%, 0.027% y 0.15%, respectivamente. Además, los resultados de la simulación muestran que, para las mismas condiciones de operación, se obtiene un error del COP del 4.58% cuando el sistema opera a una efectividad de 1.0 (100% de su capacidad), mientras que el menor error del COP del 1.02% se obtiene a una efectividad del 0.6 (60% de su capacidad), en comparación con los resultados presentados en la literatura.

Descargas

La descarga de datos todavía no está disponible.

Citas

Ahmad T., Azhar Md., Sinha M.K., Meraj Md., Mohammed Islam., Ahmad A., 2022. Energy analysis of lithium bromide-water and lithium chloride-water based single effect vapour absorption refrigeration system: A comparison study. Cleaner Engineering and Technology, 7, 100432. DOI: 10.1016/j.clet.2022.100432

Chen, D., Xie, J.H., 2006. Heat Pump Water Heater. Chemical Industry Press, Beijing, pp. 201.

Chen Y., Zhou T., Zhao T., He Y., 2022. Thermodynamic analysis of H2O−3-aminopropyl tributyl phosphonium glycinate as a working pair for absorption refrigeration system. Applied Thermal Engineering, 213, 118658. DOI: 10.1016/j.applthermaleng.2022.118658

Du S., Wang R.Z., Lin P., Xu Z.Z., Pan Q.W., Xu S.C., 2012. Experimental studies on an air cooled two stage NH3-H2O solar absorption air-conditioning prototype. Energy, 45, 581-587. DOI: 10.1016/j.energy.2012.07.041

Fernández-Seara J., Vázquez M., 2001. Study and control of the optimal generation temperature in NH3-H2O absorption refrigeration systems. Applied Thermal Engineering, 21, 343-357. DOI: 10.1016/S1359-4311(00)00047-8

Fernández-Seara J., Sieres J., 2006. Ammonia-water absorption refrigeration systems with flooded evaporators. Applied Thermal Engineering, 26, 2236-2246. DOI: 10.1016/j.applthermaleng.2006.03.011

Florides, G.A., Kalogirou, S.A., Tassou, S.A., Wrobe, L.C., 2003. Design and construction of a LiBr-water absorption machine. Energy Conversion and Management 44, 2483–2508. DOI: 10.1016/S0196-8904(03)00006-2

He, Z.B., Zhao, Z.C., Zhang, X.D., Feng, H., 2010. Thermodynamic properties of new heat pump working pairs: 1, 3-dimethylimidazolium dimethyl phosphate and water, ethanol and methanol. Fluid Phase Equilibria 298, 83–91. DOI: 10.1016/j.fluid.2010.07.005

Jawahar C.P., Raja B., Saravanan R., 2010. Thermodynamic studies on NH3-H2O absorption cooling using pinch point approach. International Journal of Refrigeration, 33, 1377-1385. DOI: 10.1016/j.ijrefrig.2010.04.015

Jiang, X., Cao, Z., 2003. A group of simple precise formulations for properties of water and steam. Power Engineering 23, 2777–2780.

Kilic M., Kaynakli O., 2007. Second law-based thermodynamic analysis of water-lithium bromide absorption system. Energy, 32, 1505-1512. DOI: 10.1016/j.energy.2006.09.003

Li N., Luo C., Su Q., 2018. A working pair of CaCl2 –LiBr–LiNO3/H2O and its application in a single-stage solar-driven absorption refrigeration cycle. International Journal of Refrigeration, 86, 1-13. DOI: 10.1016/j.ijrefrig.2017.11.004

Ma W.B., Deng S.M., 1996. Theoretical analysis of low-temperature hot source driven two-stage LiBr/H2O absorption refrigeration system. International Journal of Refrigeration, 19, 141-146. DOI: 10.1016/0140-7007(95)00054-2

Monné C., Alonso S., Palacín F., Guallar J., 2011. Stationary analysis of a solar LiBr-H2O absorption refrigeration system. International Journal of Refrigeration, 34, 518-526. DOI: 10.1016/j.ijrefrig.2010.11.009.

Patel H.A., Patel L.N., Jani D., Christian A., 2016. Energetic analysis of single stage lithium bromide water absorption refrigeration system. Procedia Technology, 23, 488-495. DOI: 10.1016/j.protcy.2016.03.054

Rogdakis E.D., Antonopoulos K.A., 1992. Performance of a low-temperature NH3-H2O absorption-refrigeration system. Energy, 17, 477-484. DOI: 10.1016/0360-5442(92)90083-C

Soliman A. S., Zhu S., Dong J., Cheng P., 2021. Design of an H2O-LiBr absorption system using PCMs and powered by automotive exhaust gas. Applied Thermal engineering, 191, 116881. DOI: 10.1016/j.applthermaleng.2021.116881

Sun D.W., 1998. Comparison of the performances of NH3-H2O, NH3-LiNO3 and NH3-NaSCN absorption refrigeration system. Energy Conversion and Management, 39, 357-368. DOI: 10.1016/S0196-8904(97)00027-7

Wang Y., Lior N., 2011a. Proposal and analysis of a high-efficiency combined desalination and refrigeration system based on the LiBr–H2O absorption cycle—Part 1: System configuration and mathematical model. Energy Conversion and Management, 52, 220-227. DOI: 10.1016/j.enconman.2010.06.071

Wang Y., Lior N., 2011b. Proposal and analysis of a high-efficiency combined desalination and refrigeration system based on the LiBr–H2O absorption cycle—Part 2: Thermal performance analysis and discussions. Energy Conversion and Management, 52, 228-235. DOI: 10.1016/j.enconman.2010.06.064

Yamamoto E., da Silva R., Higa M., 2022. Performance improvements on energy and exergy basic for an ammonia-water absorption refrigeration system in a coffee industry. Sustainable Energy Technologies and Assessments, 52, 102284. DOI: 10.1016/j.seta.2022.102284

Zhou S., Guogeng H., Liang X., Li Y., Pang Q., Cai D., 2022. Comparison of experimental performance of absorption refrigeration cycle using NH3/LiNO3+H2O working fluids with different component proportions. International Journal of Refrigeration, 139, 25-40. DOI: 10.1016/j.ijrefrig.2022.04.01

Publicado
2023-01-05
Cómo citar
Rodríguez Muñoz, J. L., Pacheco Cedeño, S., Zuno Silva, J., & Borja Soto, C. E. (2023). Programación de propiedades aplicadas a sistemas de refrigeración por absorción. Ingenio Y Conciencia Boletín Científico De La Escuela Superior Ciudad Sahagún, 10(19), 9-16. https://doi.org/10.29057/escs.v10i19.9693

Artículos más leídos del mismo autor/a

1 2 > >>