Optimización numérica de celdas solares de perovskita con capas de transporte alternativas
DOI:
https://doi.org/10.29057/estr.v13i25.15855Palabras clave:
Celda solar, perovskita, CuSbS2, eficiencia, HTL, SCAPS-1DResumen
Las celdas solares de perovskita destacan como tecnología fotovoltaica prometedora por su alta eficiencia y potencial de fabricación económica. No obstante, su comercialización se ve limitada por problemas en las capas de transporte, donde el TiO₂ muestra degradación ante UV y el Spiro-OMeTAD presenta alto costo e inestabilidad. Para abordar estas limitaciones, este estudio propone una arquitectura alternativa de perovskita libre de plomo, utilizando WO₃ como capa transportadora de electrones y CuSbS₂ como capa transportadora de huecos. Mediante simulaciones numéricas con SCAPS-1D, se evaluó sistemáticamente el impacto del espesor del HTL, la densidad de defectos en CuSbS₂ y su espesor, la función de trabajo del contacto metálico y el comportamiento térmico en el rendimiento del dispositivo. Los resultados demuestran un espesor óptimo de HTL que permite alcanzar una eficiencia máxima del 20.4%, junto con una notable tolerancia a defectos neutros y estabilidad térmica en el rango de 300-350 K. Adicionalmente, contactos metálicos de alta función de trabajo, como el hierro (∼4.8 eV), mejoran significativamente la extracción de huecos y reducen las pérdidas interfaciales. Estos hallazgos establecen criterios cuantitativos para el diseño de capas transportadoras y selección de electrodos, facilitando el desarrollo de celdas de perovskita más estables, económicas y escalables.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Singh, A. K., et al. (2021). Performance optimization of lead-free MASnI₃ based solar cell with 27% efficiency by numerical simu-
simulation. Optical Materials, 117, 111193. https://doi.org/10.1016/j.optmat.2021.111193
Razmjoo, A., et al. (2019). Implementation of energy sustainability using hybrid power systems, a case study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. https://doi.org/10.1080/15567036.2019.1687623
Swarnkar, A., et al. (2016). Quantum dot–induced phase stabilization of α-CsPbI₃ perovskite for high-efficiency photovoltaics. Science, 354(6308), 92–95. https://doi.org/10.1126/science.aag2700
Devi, C., et al. (2019). Device simulation of lead-free MASnI₃ solar cell with CuSbS₂ (copper antimony sulfide). Journal of Materials Science, 54(7), 5615–5624. https://doi.org/10.1007/s10853-018-03265-y
Sharma, D., et al. (2022). Optimization of tin based perovskite solar cell employing CuSbS₂ as HTL: A numerical simulation approach. Optical Materials, 134, 113060. https://doi.org/10.1016/j.optmat.2022.113060
Choi, H., et al. (2014). Efficient star-shaped hole transporting materials with diphenylethenyl side arms for an efficient perovskite solar cell. Journal of Materials Chemistry A, 2(45), 19136–19140. https://doi.org/10.1039/c4ta04179h
Madan, J., et al. (2020). Numerical simulation of charge transport layer free perovskite solar cell using metal work function shifted contacts. Optik, 202, 163646. https://doi.org/10.1016/j.ijleo.2019.163646
Ma, J., et al. (2018). Elucidating the roles of TiCl₄ and PCBM fullerene treatment on TiO₂ electron transporting layer for highly efficient planar perovskite solar cells. Journal of Physical Chemistry C, 122(2), 1044–1053. https://doi.org/10.1021/acs.jpcc.7b09537
Deepthi Jayan, K., et al. (2021). Comprehensive device modelling and performance analysis of MASnI₃ based perovskite solar cells with diverse ETM, HTM and back metal contacts. Solar Energy, 217, 40–48. https://doi.org/10.1016/j.solener.2021.01.058
Farhat, L. B., et al. (2024). Analysis of the role of A-cations in lead-free A₃SbI₃ (A = Ba, Sr, Ca) perovskite solar cells. Journal of Materials Science, 59(15), 6365–6385. https://doi.org/10.1007/s10853-024-09579-4
Islam, M. S., et al. (2024). Investigation strain effects on the electronic, optical, and output performance of the novel inorganic halide perovskite Sr₃SbI₃ solar cell. Chinese Journal of Physics, 88, 270–286. https://doi.org/10.1016/j.cjph.2024.01.011
Noel, N. K., et al. (2014). Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science, 7, 3061–3068. https://doi.org/10.1039/c4ee01076k
Dubey, P., et al. (2022). Simulation engineering of heterojunction colloidal quantum dot-solar cell using tungsten trioxide (WO₃) as an electron transport layer. In Advances in VLSI, Communication, and Signal Processing: Select Proceedings of VCAS 2021 (pp. 223–231). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-2631-0_20
Guo, X., et al. (2018). A 16.5% efficient perovskite solar cells with inorganic NiO film as hole transport material. IEEE Journal of Photovoltaics, 8(4), 1039–1043. https://doi.org/10.1109/jphotov.2018.2825228
Araújo, V. H. D., Nogueira, A. F., Tristão, J. C., & dos Santos, L. J. (2025). Advances in lead-free perovskite solar cell design via SCAPS-1D simulations. RSC Sustainability. https://doi.org/10.1039/D5SU00526D
Tripathi, D., Mishra, M., Sengar, V. V., & Ullas, A. V. (2022). Lead-free perovskite solar cell by using SCAPS-1D. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.04.832
Mim, E. M. K. (2025). Performance analysis of Sr₃SbI₃-based perovskite solar cell using SCAPS-1D. Advances in Materials Science and Engineering. https://doi.org/10.1155/amse/7134012
Samiul Islam, M. F., Sobayel, K., Al-Kahtani, A., Islam, M. A., Muhammad, G., Amin, N., Shahiduzzaman, M., & Akhtaruzzaman, M. (2021). Defect study and modelling of SnX₃-based perovskite solar cells with SCAPS-1D. Nanomaterials. https://doi.org/10.3390/nano11051218
Valeti, G. N. J., Kumar, S., Kumar, R., & Kumar, S. (2023). Numerical simulation and optimization of lead-free CH₃NH₃SnI₃ perovskite solar cell using SCAPS-1D. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.02.160
Lübke, D. H. (2023). Understanding the thickness and light-intensity dependent performance of molecular solar cells. ACS Materials Au. https://doi.org/10.1021/acsmaterialsau.2c00070
Moujoud, I. S. (2022). Efficiency enhancement by simulation method of copper antimony sulfide (CuSbS₂) solar cell using SCAPS-1D. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.02.157
Haynes, W. M. (Ed.). (2016). Handbook of chemistry and physics (97th ed.). CRC Press.
Samaki, K. S., Tchangnwa Nya, F., Kenfack, G. D., & Laref, A. (2023). Materials and interfaces properties optimization for high-efficient and more stable RbGeI₃ perovskite solar cells: Optoelectrical modelling. Scientific Reports. https://doi.org/10.1038/s41598-023-42471-w
Obare, L. N., Isoe, W., Nalianya, A., Mageto, M., & Odari, V. (2024). Numerical study of copper antimony sulphide (CuSbS₂) solar cell by SCAPS-1D. Heliyon. https://doi.org/10.1016/j.heliyon.2024.e26896
Tan, M. H., Che, F., Wei, M., et al. (2018). Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites. Nature Communications. https://doi.org/10.1038/s41467-018-05531-8
Firdaus, M.-S., Farooq, H., Abu-Bakar, S. H., Ardila-Rey, J. A., Sellami, N., Kilpatrick, C., Muhtazaruddin, M. N., Bani, N. A., & Zulkipli, M. (2021). Mathematical modelling of a static concentrating photovoltaic: simulation and experimental validation. Applied Sciences, 11(9), 3894. https://doi.org/10.3390/app11093894
Moser, M. (2023) Measurement techniques for the external quantum efficiency of perovskite and organic solar cells (Tesis de maestría). Johannes Kepler University. https://www.jku.at/fileadmin/gruppen/166/Publikationen/Thesis/Moser_Master.pdf?utm
Saidarsan, A. (2025). A critical review of unrealistic results in SCAPS-1D. Solar Energy Materials & Solar Cells. https://doi.org/10.1016/j.solmat.2024.113230
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Zain de J. Vázquez-Ramírez, Rodrigo Soriano-Hipólito, José Á. Viveros-Sánchez

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.










