Síntesis verde de nanopartículas de oro y su aplicación como sensores para la detección de metales y metaloides en agua: Avances y perspectivas
DOI:
https://doi.org/10.29057/estr.v13i25.15922Palabras clave:
Síntesis verde, nanopartículas de oro, sensores ambientales, sostenibilidadResumen
La síntesis verde de nanopartículas de oro (AuNPs) ofrece una estrategia sostenible para desarrollar sensores de metales y metaloides en agua. Estas partículas combinan alta sensibilidad, biocompatibilidad y capacidad de funcionalización, facilitando su adaptación a distintas matrices acuosas. A pesar de sus ventajas, persisten retos en reproducibilidad, control de tamaño y morfología, selectividad en aguas complejas y escalabilidad de la síntesis. La integración de AuNPs verdes en plataformas portátiles o híbridas representa una oportunidad para mejorar el monitoreo ambiental en tiempo real. Su implementación efectiva requiere investigación interdisciplinaria, optimización de protocolos y consideración de marcos regulatorios, equilibrando innovación tecnológica, sostenibilidad y aplicabilidad práctica.
Descargas
Citas
Ali, S., Chen, X., Shi, W., Huang, G., Yuan, L., Meng, L., Chen, S., Zhonghao, X., & Chen, X. (2023). Recent Advances in Silver and Gold Nanoparticles-Based Colorimetric Sensors for Heavy Metal Ions Detection: A Review. Critical Reviews in Analytical Chemistry, 53(3), 718–750. https://doi.org/10.1080/10408347.2021.1973886
Alikhani, N., Hekmati, M., Karmakar, B., & Veisi, H. (2022). Green synthesis of gold nanoparticles (Au NPs) using Rosa canina fruit extractand evaluation of its catalytic activity in the degradation of organic dye pollutants of water. Inorganic Chemistry Communications, 139, 109351. https://doi.org/10.1016/j.inoche.2022.109351
Burlec, A. F., Corciova, A., Boev, M., Batir-Marin, D., Mircea, C., Cioanca, O., Danila, G., Danila, M., Bucur, A. F., & Hancianu, M. (2023). Current Overview of Metal Nanoparticles’ Synthesis, Characterization, and Biomedical Applications, with a Focus on Silver and Gold Nanoparticles. Pharmaceuticals, 16(10), 1410. https://doi.org/10.3390/ph16101410
Cho, H. H., Jung, D. H., Heo, J. H., Lee, C. Y., Jeong, S. Y., & Lee, J. H. (2023). Gold Nanoparticles as Exquisite Colorimetric Transducers for Water Pollutant Detection. ACS Applied Materials & Interfaces, 15(16), 19785–19806. https://doi.org/10.1021/acsami.3c00627
Comisión Federal para la Protección contra Riesgos Sanitarios, Comisión Nacional del Agua, & Instituto Mexicano de Tecnología del Agua. (2021). Norma Oficial Mexicana NOM-127-SSA1-2021, Agua para uso y consumo humano. Límites permisibles de la calidad del agua. Https://Www.Dof.Gob.Mx/Nota_detalle_popup.Php?Codigo=5650705.
Dikshit, P., Kumar, J., Das, A., Sadhu, S., Sharma, S., Singh, S., Gupta, P., & Kim, B. (2021). Green Synthesis of Metallic Nanoparticles: Applications and Limitations. Catalysts, 11(8), 902. https://doi.org/10.3390/catal11080902
Eckelman, M. J., Zimmerman, J. B., & Anastas, P. T. (2008). Toward Green Nano. Journal of Industrial Ecology, 12(3), 316–328. https://doi.org/10.1111/j.1530-9290.2008.00043.x
Estados Unidos Mexicanos.- SALUD.- Secretaría de Salud. (2021). NORMA Oficial Mexicana NOM-127-SSA1-2021, Agua para uso y consumo humano. Límites permisibles de la calidad del agua.
Feng, Z., Jia, Y., & Cui, H. (2024). Engineering the surface roughness of the gold nanoparticles for the modulation of LSPR and SERS. Journal of Colloid and Interface Science, 672, 1–11. https://doi.org/10.1016/j.jcis.2024.05.217
Geleta, G. S. (2023). A colorimetric aptasensor based on two dimensional (2D) nanomaterial and gold nanoparticles for detection of toxic heavy metal ions: A review. Food Chemistry Advances, 2, 100184. https://doi.org/10.1016/j.focha.2023.100184
Gezahegn, T. F., Ambaye, A. D., Mekoyete, T. M., Malefane, M. E., Oyedotun, K. O., & Mokrani, T. (2024). Breakthroughs in nanostructured-based chemical sensors for the detection of toxic metals. Talanta Open, 10, 100354. https://doi.org/10.1016/j.talo.2024.100354
Gul, Z., Ullah, S., Khan, S., Ullah, H., Khan, M. U., Ullah, M., Ali, S., & Altaf, A. A. (2024). Recent Progress in Nanoparticles Based Sensors for the Detection of Mercury (II) Ions in Environmental and Biological Samples. Critical Reviews in Analytical Chemistry, 54(1), 44–60. https://doi.org/10.1080/10408347.2022.2049676
Hammami, I., Alabdallah, N. M., jomaa, A. Al, & kamoun, M. (2021). Gold nanoparticles: Synthesis properties and applications. Journal of King Saud University - Science, 33(7), 101560. https://doi.org/10.1016/j.jksus.2021.101560
Huston, M., DeBella, M., DiBella, M., & Gupta, A. (2021). Green Synthesis of Nanomaterials. Nanomaterials, 11(8), 2130. https://doi.org/10.3390/nano11082130
Karnwal, A., Kumar Sachan, R. S., Devgon, I., Devgon, J., Pant, G., Panchpuri, M., Ahmad, A., Alshammari, M. B., Hossain, K., & Kumar, G. (2024). Gold Nanoparticles in Nanobiotechnology: From Synthesis to Biosensing Applications. ACS Omega, 9(28), 29966–29982. https://doi.org/10.1021/acsomega.3c10352
Khanam, S. A., Zaki, M. E. A., Islam, S., Saikia, S., & Bania, K. K. (2025). Green Chemistry Approaches for Sustainable Synthesis of Inorganic Nanomaterials (pp. 255–284). https://doi.org/10.1007/978-3-031-84643-4_9
Kiran, Bharti, R., & Sharma, R. (2022). Effect of heavy metals: An overview. Materials Today: Proceedings, 51, 880–885. https://doi.org/10.1016/j.matpr.2021.06.278
Kumar, B. (2021). Green Synthesis of Gold, Silver, and Iron Nanoparticles for the Degradation of Organic Pollutants in Wastewater. Journal of Composites Science, 5(8), 219. https://doi.org/10.3390/jcs5080219
Lee, J. W., Choi, S.-R., & Heo, J. H. (2021). Simultaneous Stabilization and Functionalization of Gold Nanoparticles via Biomolecule Conjugation: Progress and Perspectives. ACS Applied Materials & Interfaces, 13(36), 42311–42328. https://doi.org/10.1021/acsami.1c10436
Li, M., Shi, Q., Song, N., Xiao, Y., Wang, L., Chen, Z., & James, T. D. (2023a). Current trends in the detection and removal of heavy metal ions using functional materials. Chemical Society Reviews, 52(17), 5827–5860. https://doi.org/10.1039/D2CS00683A
Mohamed, A., Li, X., Li, C., Li, X., Yuan, C., & Barakat, H. (2021). Smartphone-Based Colorimetric Detection of Chromium (VI) by Maleic Acid-Functionalized Gold Nanoparticles. Applied Sciences, 11(22), 10894. https://doi.org/10.3390/app112210894
Nadaf, S. J., Jadhav, N. R., Naikwadi, H. S., Savekar, P. L., Sapkal, I. D., Kambli, M. M., & Desai, I. A. (2022). Green synthesis of gold and silver nanoparticles: Updates on research, patents, and future prospects. OpenNano, 8, 100076. https://doi.org/10.1016/j.onano.2022.100076
Niżnik, Ł., Noga, M., Kobylarz, D., Frydrych, A., Krośniak, A., Kapka-Skrzypczak, L., & Jurowski, K. (2024). Gold Nanoparticles (AuNPs)—Toxicity, Safety and Green Synthesis: A Critical Review. International Journal of Molecular Sciences, 25(7), 4057. https://doi.org/10.3390/ijms25074057
Nordberg, G. F., Nordberg, , Monica, & Costa, M. (2022). Toxicology of metals: Overview, definitions, concepts, and trends. In Handbook on the Toxicology of Metals (pp. 1–14). Elsevier. https://doi.org/10.1016/B978-0-12-823292-7.00029-2
Ribeiro, A. P. C., Martins, L. M. D. R. S., Bastos, D. E. N., Cristino, A. F., & Galhano dos Santos, R. (2021). The importance of green chemistry metrics. In Handbook of Greener Synthesis of Nanomaterials and Compounds (pp. 37–62). Elsevier. https://doi.org/10.1016/B978-0-12-821938-6.00002-5
Rónavári, A., Igaz, N., Adamecz, D. I., Szerencsés, B., Molnar, C., Kónya, Z., Pfeiffer, I., & Kiricsi, M. (2021). Green Silver and Gold Nanoparticles: Biological Synthesis Approaches and Potentials for Biomedical Applications. Molecules, 26(4), 844. https://doi.org/10.3390/molecules26040844
Saleh, S. M., Almotiri, M. K., & Ali, R. (2022). Green synthesis of highly luminescent gold nanoclusters and their application in sensing Cu(II) and Hg(II). Journal of Photochemistry and Photobiology A: Chemistry, 426, 113719. https://doi.org/10.1016/j.jphotochem.2021.113719
Sener, G., Uzun, L., & Denizli, A. (2014). Colorimetric Sensor Array Based on Gold Nanoparticles and Amino Acids for Identification of Toxic Metal Ions in Water. ACS Applied Materials & Interfaces, 6(21), 18395–18400. https://doi.org/10.1021/am5071283
Sheldon, R. A. (2007). The E Factor: fifteen years on. Green Chemistry, 9(12), 1273. https://doi.org/10.1039/b713736m
Singh, H., Bamrah, A., Bhardwaj, S. K., Deep, A., Khatri, M., Brown, R. J. C., Bhardwaj, N., & Kim, K.-H. (2021). Recent advances in the application of noble metal nanoparticles in colorimetric sensors for lead ions. Environmental Science: Nano, 8(4), 863–889. https://doi.org/10.1039/D0EN00963F
Singh, H., Desimone, M. F., Pandya, S., Jasani, S., George, N., Adnan, M., Aldarhami, A., Bazaid, A. S., & Alderhami, S. A. (2023). Revisiting the Green Synthesis of Nanoparticles: Uncovering Influences of Plant Extracts as Reducing Agents for Enhanced Synthesis Efficiency and Its Biomedical Applications. International Journal of Nanomedicine, Volume 18, 4727–4750. https://doi.org/10.2147/IJN.S419369
Singh, K., Kumar, V., Kukkar, B., Kim, K.-H., & Sharma, T. R. (2022). Facile and efficient colorimetric detection of cadmium ions in aqueous systems using green-synthesized gold nanoparticles. International Journal of Environmental Science and Technology, 19(6), 4673–4690. https://doi.org/10.1007/s13762-021-03331-0
Vanga, S., & Satla, S. R. (2025). A review on green synthesis, characterization and applications of plant mediated metal nanoparticles. Next Research, 2(2), 100356. https://doi.org/10.1016/j.nexres.2025.100356
World Health Organization. (2022). Guidelines for drinking water quality, Fourth edition incorporating the first and second addenda. ISBN 978-92-4-004506-4.
Wu, Y., Zhan, S., Wang, F., He, L., Zhi, W., & Zhou, P. (2012). Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic(iii) in aqueous solution. Chemical Communications, 48(37), 4459. https://doi.org/10.1039/c2cc30384a
Yu, Y., Naik, S. S., Oh, Y., Theerthagiri, J., Lee, S. J., & Choi, M. Y. (2021). Lignin-mediated green synthesis of functionalized gold nanoparticles via pulsed laser technique for selective colorimetric detection of lead ions in aqueous media. Journal of Hazardous Materials, 420, 126585. https://doi.org/10.1016/j.jhazmat.2021.1265
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Josue A. Lara Zavala, Susana S. Silva Martínez, Naveen K. Reddy Bogireddy

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Datos de los fondos
-
Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México
Números de la subvención PAPIIT IA202324










