Síntesis verde de nanopartículas de oro y su aplicación como sensores para la detección de metales y metaloides en agua: Avances y perspectivas

Autores/as

DOI:

https://doi.org/10.29057/estr.v13i25.15922

Palabras clave:

Síntesis verde, nanopartículas de oro, sensores ambientales, sostenibilidad

Resumen

La síntesis verde de nanopartículas de oro (AuNPs) ofrece una estrategia sostenible para desarrollar sensores de metales y metaloides en agua. Estas partículas combinan alta sensibilidad, biocompatibilidad y capacidad de funcionalización, facilitando su adaptación a distintas matrices acuosas. A pesar de sus ventajas, persisten retos en reproducibilidad, control de tamaño y morfología, selectividad en aguas complejas y escalabilidad de la síntesis. La integración de AuNPs verdes en plataformas portátiles o híbridas representa una oportunidad para mejorar el monitoreo ambiental en tiempo real. Su implementación efectiva requiere investigación interdisciplinaria, optimización de protocolos y consideración de marcos regulatorios, equilibrando innovación tecnológica, sostenibilidad y aplicabilidad práctica.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ali, S., Chen, X., Shi, W., Huang, G., Yuan, L., Meng, L., Chen, S., Zhonghao, X., & Chen, X. (2023). Recent Advances in Silver and Gold Nanoparticles-Based Colorimetric Sensors for Heavy Metal Ions Detection: A Review. Critical Reviews in Analytical Chemistry, 53(3), 718–750. https://doi.org/10.1080/10408347.2021.1973886

Alikhani, N., Hekmati, M., Karmakar, B., & Veisi, H. (2022). Green synthesis of gold nanoparticles (Au NPs) using Rosa canina fruit extractand evaluation of its catalytic activity in the degradation of organic dye pollutants of water. Inorganic Chemistry Communications, 139, 109351. https://doi.org/10.1016/j.inoche.2022.109351

Burlec, A. F., Corciova, A., Boev, M., Batir-Marin, D., Mircea, C., Cioanca, O., Danila, G., Danila, M., Bucur, A. F., & Hancianu, M. (2023). Current Overview of Metal Nanoparticles’ Synthesis, Characterization, and Biomedical Applications, with a Focus on Silver and Gold Nanoparticles. Pharmaceuticals, 16(10), 1410. https://doi.org/10.3390/ph16101410

Cho, H. H., Jung, D. H., Heo, J. H., Lee, C. Y., Jeong, S. Y., & Lee, J. H. (2023). Gold Nanoparticles as Exquisite Colorimetric Transducers for Water Pollutant Detection. ACS Applied Materials & Interfaces, 15(16), 19785–19806. https://doi.org/10.1021/acsami.3c00627

Comisión Federal para la Protección contra Riesgos Sanitarios, Comisión Nacional del Agua, & Instituto Mexicano de Tecnología del Agua. (2021). Norma Oficial Mexicana NOM-127-SSA1-2021, Agua para uso y consumo humano. Límites permisibles de la calidad del agua. Https://Www.Dof.Gob.Mx/Nota_detalle_popup.Php?Codigo=5650705.

Dikshit, P., Kumar, J., Das, A., Sadhu, S., Sharma, S., Singh, S., Gupta, P., & Kim, B. (2021). Green Synthesis of Metallic Nanoparticles: Applications and Limitations. Catalysts, 11(8), 902. https://doi.org/10.3390/catal11080902

Eckelman, M. J., Zimmerman, J. B., & Anastas, P. T. (2008). Toward Green Nano. Journal of Industrial Ecology, 12(3), 316–328. https://doi.org/10.1111/j.1530-9290.2008.00043.x

Estados Unidos Mexicanos.- SALUD.- Secretaría de Salud. (2021). NORMA Oficial Mexicana NOM-127-SSA1-2021, Agua para uso y consumo humano. Límites permisibles de la calidad del agua.

Feng, Z., Jia, Y., & Cui, H. (2024). Engineering the surface roughness of the gold nanoparticles for the modulation of LSPR and SERS. Journal of Colloid and Interface Science, 672, 1–11. https://doi.org/10.1016/j.jcis.2024.05.217

Geleta, G. S. (2023). A colorimetric aptasensor based on two dimensional (2D) nanomaterial and gold nanoparticles for detection of toxic heavy metal ions: A review. Food Chemistry Advances, 2, 100184. https://doi.org/10.1016/j.focha.2023.100184

Gezahegn, T. F., Ambaye, A. D., Mekoyete, T. M., Malefane, M. E., Oyedotun, K. O., & Mokrani, T. (2024). Breakthroughs in nanostructured-based chemical sensors for the detection of toxic metals. Talanta Open, 10, 100354. https://doi.org/10.1016/j.talo.2024.100354

Gul, Z., Ullah, S., Khan, S., Ullah, H., Khan, M. U., Ullah, M., Ali, S., & Altaf, A. A. (2024). Recent Progress in Nanoparticles Based Sensors for the Detection of Mercury (II) Ions in Environmental and Biological Samples. Critical Reviews in Analytical Chemistry, 54(1), 44–60. https://doi.org/10.1080/10408347.2022.2049676

Hammami, I., Alabdallah, N. M., jomaa, A. Al, & kamoun, M. (2021). Gold nanoparticles: Synthesis properties and applications. Journal of King Saud University - Science, 33(7), 101560. https://doi.org/10.1016/j.jksus.2021.101560

Huston, M., DeBella, M., DiBella, M., & Gupta, A. (2021). Green Synthesis of Nanomaterials. Nanomaterials, 11(8), 2130. https://doi.org/10.3390/nano11082130

Karnwal, A., Kumar Sachan, R. S., Devgon, I., Devgon, J., Pant, G., Panchpuri, M., Ahmad, A., Alshammari, M. B., Hossain, K., & Kumar, G. (2024). Gold Nanoparticles in Nanobiotechnology: From Synthesis to Biosensing Applications. ACS Omega, 9(28), 29966–29982. https://doi.org/10.1021/acsomega.3c10352

Khanam, S. A., Zaki, M. E. A., Islam, S., Saikia, S., & Bania, K. K. (2025). Green Chemistry Approaches for Sustainable Synthesis of Inorganic Nanomaterials (pp. 255–284). https://doi.org/10.1007/978-3-031-84643-4_9

Kiran, Bharti, R., & Sharma, R. (2022). Effect of heavy metals: An overview. Materials Today: Proceedings, 51, 880–885. https://doi.org/10.1016/j.matpr.2021.06.278

Kumar, B. (2021). Green Synthesis of Gold, Silver, and Iron Nanoparticles for the Degradation of Organic Pollutants in Wastewater. Journal of Composites Science, 5(8), 219. https://doi.org/10.3390/jcs5080219

Lee, J. W., Choi, S.-R., & Heo, J. H. (2021). Simultaneous Stabilization and Functionalization of Gold Nanoparticles via Biomolecule Conjugation: Progress and Perspectives. ACS Applied Materials & Interfaces, 13(36), 42311–42328. https://doi.org/10.1021/acsami.1c10436

Li, M., Shi, Q., Song, N., Xiao, Y., Wang, L., Chen, Z., & James, T. D. (2023a). Current trends in the detection and removal of heavy metal ions using functional materials. Chemical Society Reviews, 52(17), 5827–5860. https://doi.org/10.1039/D2CS00683A

Mohamed, A., Li, X., Li, C., Li, X., Yuan, C., & Barakat, H. (2021). Smartphone-Based Colorimetric Detection of Chromium (VI) by Maleic Acid-Functionalized Gold Nanoparticles. Applied Sciences, 11(22), 10894. https://doi.org/10.3390/app112210894

Nadaf, S. J., Jadhav, N. R., Naikwadi, H. S., Savekar, P. L., Sapkal, I. D., Kambli, M. M., & Desai, I. A. (2022). Green synthesis of gold and silver nanoparticles: Updates on research, patents, and future prospects. OpenNano, 8, 100076. https://doi.org/10.1016/j.onano.2022.100076

Niżnik, Ł., Noga, M., Kobylarz, D., Frydrych, A., Krośniak, A., Kapka-Skrzypczak, L., & Jurowski, K. (2024). Gold Nanoparticles (AuNPs)—Toxicity, Safety and Green Synthesis: A Critical Review. International Journal of Molecular Sciences, 25(7), 4057. https://doi.org/10.3390/ijms25074057

Nordberg, G. F., Nordberg, , Monica, & Costa, M. (2022). Toxicology of metals: Overview, definitions, concepts, and trends. In Handbook on the Toxicology of Metals (pp. 1–14). Elsevier. https://doi.org/10.1016/B978-0-12-823292-7.00029-2

Ribeiro, A. P. C., Martins, L. M. D. R. S., Bastos, D. E. N., Cristino, A. F., & Galhano dos Santos, R. (2021). The importance of green chemistry metrics. In Handbook of Greener Synthesis of Nanomaterials and Compounds (pp. 37–62). Elsevier. https://doi.org/10.1016/B978-0-12-821938-6.00002-5

Rónavári, A., Igaz, N., Adamecz, D. I., Szerencsés, B., Molnar, C., Kónya, Z., Pfeiffer, I., & Kiricsi, M. (2021). Green Silver and Gold Nanoparticles: Biological Synthesis Approaches and Potentials for Biomedical Applications. Molecules, 26(4), 844. https://doi.org/10.3390/molecules26040844

Saleh, S. M., Almotiri, M. K., & Ali, R. (2022). Green synthesis of highly luminescent gold nanoclusters and their application in sensing Cu(II) and Hg(II). Journal of Photochemistry and Photobiology A: Chemistry, 426, 113719. https://doi.org/10.1016/j.jphotochem.2021.113719

Sener, G., Uzun, L., & Denizli, A. (2014). Colorimetric Sensor Array Based on Gold Nanoparticles and Amino Acids for Identification of Toxic Metal Ions in Water. ACS Applied Materials & Interfaces, 6(21), 18395–18400. https://doi.org/10.1021/am5071283

Sheldon, R. A. (2007). The E Factor: fifteen years on. Green Chemistry, 9(12), 1273. https://doi.org/10.1039/b713736m

Singh, H., Bamrah, A., Bhardwaj, S. K., Deep, A., Khatri, M., Brown, R. J. C., Bhardwaj, N., & Kim, K.-H. (2021). Recent advances in the application of noble metal nanoparticles in colorimetric sensors for lead ions. Environmental Science: Nano, 8(4), 863–889. https://doi.org/10.1039/D0EN00963F

Singh, H., Desimone, M. F., Pandya, S., Jasani, S., George, N., Adnan, M., Aldarhami, A., Bazaid, A. S., & Alderhami, S. A. (2023). Revisiting the Green Synthesis of Nanoparticles: Uncovering Influences of Plant Extracts as Reducing Agents for Enhanced Synthesis Efficiency and Its Biomedical Applications. International Journal of Nanomedicine, Volume 18, 4727–4750. https://doi.org/10.2147/IJN.S419369

Singh, K., Kumar, V., Kukkar, B., Kim, K.-H., & Sharma, T. R. (2022). Facile and efficient colorimetric detection of cadmium ions in aqueous systems using green-synthesized gold nanoparticles. International Journal of Environmental Science and Technology, 19(6), 4673–4690. https://doi.org/10.1007/s13762-021-03331-0

Vanga, S., & Satla, S. R. (2025). A review on green synthesis, characterization and applications of plant mediated metal nanoparticles. Next Research, 2(2), 100356. https://doi.org/10.1016/j.nexres.2025.100356

World Health Organization. (2022). Guidelines for drinking water quality, Fourth edition incorporating the first and second addenda. ISBN 978-92-4-004506-4.

Wu, Y., Zhan, S., Wang, F., He, L., Zhi, W., & Zhou, P. (2012). Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic(iii) in aqueous solution. Chemical Communications, 48(37), 4459. https://doi.org/10.1039/c2cc30384a

Yu, Y., Naik, S. S., Oh, Y., Theerthagiri, J., Lee, S. J., & Choi, M. Y. (2021). Lignin-mediated green synthesis of functionalized gold nanoparticles via pulsed laser technique for selective colorimetric detection of lead ions in aqueous media. Journal of Hazardous Materials, 420, 126585. https://doi.org/10.1016/j.jhazmat.2021.1265

Descargas

Publicado

2026-01-05

Cómo citar

Lara Zavala, J. A., Silva Martínez, S. S., & Bogireddy, N. K. R. (2026). Síntesis verde de nanopartículas de oro y su aplicación como sensores para la detección de metales y metaloides en agua: Avances y perspectivas. TEPEXI Boletín Científico De La Escuela Superior Tepeji Del Río, 13(25), 111–117. https://doi.org/10.29057/estr.v13i25.15922

Datos de los fondos