Health implications of barley β-glucans

Keywords: Barley, β-glucan, dietary fiber, health

Abstract

Barley grain is an important source of β-glucan, which is a polysaccharide that is part of soluble dietary fiber (DF). Soluble fiber has better hydration properties, as does fermentation and the production of short chain fatty acids (SCFA). β -glucans provide numerous benefits to human health. The objective of this review is to analyze the current evidence and report on the modifications it undergoes during consumption, its addition and functional properties of barley β-glucans, allowing to obtain the health benefits (hypolipidemic, hypoglycemic and hypocholesterolemic). According to the review, they have been found to help lower total cholesterol and LDL-C, prevent visceral fat and the risk of diverticular disease, as well as cause delayed gastric emptying and attenuation of the absorption rate of glucose in the small intestine. They can also help relieve gastric lesions and participate in anticancer activity and lung carcinoma; also, its topical application improves the healing of diabetic and venous ulcers. Evidence from recent studies consistently shows that β-glucan consumption is associated with multiple benefits, from decreased macronutrients absorption to wound healing. This further highlights the importance of its consumption and application.

Downloads

Download data is not yet available.

References

Brownlee IA, Chater PI, Pearson JP and Wilcox MD. (2017). Dietary fibre and weight loss: Where are we now? Food Hydrocoll. 68:186-191.

Whitehead, A., Beck, E. J., Tosh, S., & Wolever, T. M. (2014). Cholesterol-lowering effects of oat β-glucan: a meta-analysis of randomized controlled trials. The American journal of clinical nutrition, 100(6), 1413-1421

Villacrés E, Campaña D, Garófalo J, Falconí E, Quelal M, Matanguihan J and Murphy K. (2019). Evaluation of β-glucan content, viscosity, soluble dietary fiber and processing effect in grains of Ecuadorian barley genotypes. Agronomía Colombiana 37(3):323-330.

Aktas-Akyildiz E, Sibakov J, Nappa M, Hytönen E, Koksel H and Poutanen K. (2018). Extraction of soluble β-glucan from oat and barley fractions: Process efficiency and dispersion stability. Journal of Cereal Science, 81:60–68.

De Paula R, Abdel-Aal ESM, Messia MC, Rabalski I and Marconi E. (2017). Effect of processing on the beta-glucan physicochemical properties in barley and semolina pasta. Journal of Cereal Science, 75:124–131.

Kim H and Kim H. (2017). Physicochemical characteristics and in vitro bile acid binding and starch digestion of β-glucans extracted from different varieties of Jeju barley. Food Sci Biotechnol, 26:1501–1510.

Revuelta I. (2020). 3 Museos. Historia de la cerveza en México. Recuperado el 11 de junio de 2020 de https://www.3museos.com/?eventos=historia-de-la-cerveza-en-mexico#:~:text=Hace%20casi%20quinientos%20a%C3%B1os%2C%20Alfonso,primer%20productor%20de%20cerveza%20en

CIMA. Reporte del mercado de cebada, enero 2020. Disponible en: https://www.cima.aserca.gob.mx/work/models/cima/pdf/cadena/2020/Reporte_mercado_cebada_100120.pdf

Sánchez AR, Martín FM, Palma MS, López PB, Bermejo LLM and Gómez C C. (2015). Indicaciones de diferentes tipos de fibra en distintas patologías. Nutrición Hospitalaria, 31(6):2372-2383.

Aune D, Sen A, Norat T and Riboli E. (2019). Dietary fibre intake and the risk of diverticular disease: a systematic review and meta-analysis of prospective studies. European Journal of Nutrition, 1-12.

Agüero JAR, Palacios CL, Hernández MER, Tobías HMR and Cuello CM. (2019). Polisacáridos estructurales y fibra dietética en brotes florales (Tunitas) de Nopalea cochenillifera (L.) Salm-Dick de diferente estadio de desarrollo. Agrociencia, 53(4):605-616.

Dai FJ and Chau CF. (2017). Classification and regulatory perspectives of dietary fiber. Journal of Food and Drug Analysis, 25(1):37-42.

Vilcanqui-Pérez F and Vílchez-Perales C. (2017). Fibra dietaria: nuevas definiciones, propiedades funcionales y beneficios para la salud. Revisión. Archivos Latinoamericanos de Nutrición, 67(2):146-156.

Wong J, De Souza R, Kendall C, Emam A and Jenkins D. (2006). Colonic health: fermentation and short chain fatty acids. Journal of Clinical Gastroenterology, 40(3):235–243.

De Arcangelis E and Djurle S, Andersson AAM, Marconi E, Messia MC and Andersson R. (2019). Structure analysis of β-glucan in barley and effects of wheat β-glucanase. Journal of Cereal Science, 85:175–181.

Pizarro CS, Ronco MAM and Gotteland RM. (2014). β-glucanos: ¿qué tipos existen y cuáles son sus beneficios en la salud? Revista Chilena de Nutrición, 41(4):439–446

Kant L, Amrapali, S and Babu BK. (2016). Barley. In Singh M and Upadhyaya HD (ed) Genetic and Genomic Resources for Grain Cereals Improvement, Academic Press, p. 125–157.

Grando S and Macpherson HG. (2005). Food barley: importance, uses and local knowledge. ICARDA, Aleppo, Syria, 121-137.

Baik BK and Ullrich SE. (2008). Barley for food: characteristics, improvement, and renewed interest. Journal of Cereal Science, 48(2):233-242.

Secretaría de Agricultura y Desarrollo Rural. (02 de agosto de 2019). Producción de cerveza en México: una historia para celebrar. Recuperado el 10 de junio de 2020 de https://www.gob.mx/agricultura/articulos/produccion-de-cerveza-en-mexico-una-historia-para-celebrar

Karimi R, Azizi MH and Xu Q. (2019). Effect of different enzymatic extractions on molecular weight distribution, rheological and microstructural properties of barley bran β-glucan. International Journal of Biological Macromolecules, 126:298–309.

Li Z, Dong Y, Xiao X and Zhou X-H. (2019). Mechanism by which β-glucanase improves the quality of fermented barley flour-based food products. Food Chemistry, 311:126026.

Danilova TV, Friebe B, Gill BS, Poland J and Jackson E. (2017). Development of a complete set of wheat–barley group-7 Robertsonian translocation chromosomes conferring an increased content of β-glucan. Theoretical and Applied Genetics, 131(2):377–388.

Zhao Y, Zhou HM, Huang ZH and Zhao RY. (2020). Different Aggregation States of Barley β-Glucan Molecules Affects Their Solution Behavior: A Comparative Analysis. Food Hydrocolloids, 101:105543.

Kim EK, Oh TJ, Kim LK and Cho YM. (2016). Improving effect of the acute administration of dietary fiber-enriched cereals on blood glucose levels and gut hormone secretion. Journal of Korean Medical Science. 31(29):222-230.

Chen H, Nie Q, Xie M, Yao H, Zhang K, Yin J and Nie S. (2019). Protective effects of β-glucan isolated from highland barley on ethanol-induced gastric damage in rats and its benefits to mice gut conditions. Food Research International, 122:157-166.

Fusté N, Guasch M, Guillen P, Anerillas C, Cemeli T, Pedraza N, et al. (2019). Barley β-glucan accelerates wound healing by favoring migration versus proliferation of human dermal fibroblasts. Carbohydrate Polymers, 210:389–398.

Arcidiacono MV, Carrillo-López N, Panizo S, Castro-Grattoni AL, Valcheva P, Ulloa C and Dusso AS. (2019). Barley-ß-glucans reduce systemic inflammation, renal injury and aortic calcification through ADAM17 and neutral-sphingomyelinase2 inhibition. Scientific Reports, 9(1):1-14.

Saravanakumar K, Jeevithan E, Hu X, Chelliah R, Oh DH and Wang M.-H. (2020). Enhanced anti-lung carcinoma and anti-biofilm activity of fungal molecules mediated biogenic zinc oxide nanoparticles conjugated with β-D-glucan from barley. Journal of Photochemistry and Photobiology B: Biology, 203:111728.

Aoe S, Ichinose Y, Kohyama N, Komae K, Takahashi A, Abe D and Yanagisawa T. (2017). Effects of high β-glucan barley on visceral fat obesity in Japanese individuals: A randomized, double-blind study. Nutrition, 42:1–6.

Xiao X, Tan C, Sun X, Zhao Y, Zhang J, Zhu Y and Zhou X. (2019). Effects of fermentation on structural characteristics and in vitro physiological activities of barley β-glucan. Carbohydrate Polymers, 231:115685.x

Zhai H, Gunness P and Gidley MJ. (2020). Barley β-glucan effects on emulsification and in vitro lipolysis of canola oil are modulated by molecular size, mixing method, and emulsifier type. Food Hydrocolloids, 103:105643.

Messia MC, Oriente M, Angelicola M, De Arcangelis E, and Marconi E. (2019). Development of functional couscous enriched in barley β-glucans. Journal of Cereal Science 85:137–142.

Lotfi SS, Koocheki A, Milani E, and Mohebbi M. (2020). Production of high fiber ready-to-eat expanded snack from barley flour and carrot pomace using extrusion cooking technology. Journal of Food Science and Technology, 57:2169–2181.

Gangopadhyay N, O'Shea N, Brunton NP, Gallagher E, Harrison SM and Rai DK. (2019). Fate of beta-glucan, polyphenols and lipophilic compounds in baked crackers fortified with different barley-milled fractions. LWT, 114:108413.

Djurle S, Andersson AAM and Andersson R. (2018). Effects of baking on dietary fibre, with emphasis on β-glucan and resistant starch, in barley breads. Journal of Cereal Science, 79:449–455.

Zhang K, Yang J, Qiao Z, Cao X, Luo Q, Zhao J, Wang F and Zhang W. (2019). Assessment of β-glucans, phenols, flavor and volatile profiles of hulless barley wine originating from highland areas of China. Food Chemistry, 293:32-40.

Kaur R and Riar CS. (2019). Sensory, rheological and chemical characteristics during storage of set type full fat yoghurt fortified with barley β-glucan. Journal of Food Science and Technology. 57:41–51.

Published
2021-12-05
How to Cite
Alanís, E., & García-Luna , A. M. (2021). Health implications of barley β-glucans. Educación Y Salud Boletín Científico Instituto De Ciencias De La Salud Universidad Autónoma Del Estado De Hidalgo, 10(19), 198-204. https://doi.org/10.29057/icsa.v10i19.6931