Characterization of Multifunctional Edible Coatings Incorporating Sugar Beet
Palabras clave:
Remolacha Azucarera, Residuos Alimentarios, Recubrimientos ComestiblesResumen
Este estudio presenta un enfoque innovador para valorizar los residuos agroindustriales de la remolacha azucarera mediante el desarrollo de recubrimientos comestibles multifuncionales con propiedades antioxidantes y antimicrobianas mejoradas. Al utilizar compuestos bioactivos naturales, el estudio aborda la creciente demanda de productos alimenticios de etiqueta limpia al tiempo que promueve la sostenibilidad ambiental. Además, esta investigación contribuye a la economía circular al convertir los subproductos agrícolas en ingredientes funcionales de alto valor, lo que respalda las prácticas agrícolas y de procesamiento de alimentos sostenibles. Los resultados proporcionan una base científica para la posible aplicación de estos recubrimientos en la conservación de alimentos, ofreciendo una alternativa natural y sostenible a los aditivos sintéticos. Las investigaciones futuras deberían explorar los atributos sensoriales y el rendimiento funcional de estos recubrimientos en sistemas alimentarios reales para validar su eficacia en aplicaciones prácticas. Además, la investigación de los efectos sinérgicos de la combinación de extractos de remolacha azucarera con otros conservantes naturales, como aceites esenciales y antimicrobianos derivados de plantas, podría mejorar aún más su funcionalidad.
Descargas
Citas
[2] Fadiji, T., Rashvand, M., Daramola, M. O., & Iwarere, S. A. (2023). A review on antimicrobial packaging for extending the shelf life of food. Processes, 11(2), 590. https://doi.org/10.3390/pr11020590
[3] Jurić, M., Bandić, L. M., Carullo, D., & Jurić, S. (2024). Technological advancements in edible coatings: Emerging trends and applications in sustainable food preservation. Food bioscience, 103835. https://doi.org/10.1016/j.fbio.2024.103835
[4] Kumar, L., Ramakanth, D., Akhila, K., & Gaikwad, K. K. (2022). Edible films and coatings for food packaging applications: A review. Environmental Chemistry Letters, 1-26. https://doi.org/10.1007/s10311-021-01339-z
[5] Ribeiro, A. M., Estevinho, B. N., & Rocha, F. (2021). Preparation and incorporation of functional ingredients in edible films and coatings. Food and Bioprocess Technology, 14, 209-231. https://doi.org/10.1007/s11947-020-02528-4
[6] Gutiérrez-del-Río, I., López-Ibáñez, S., Magadán-Corpas, P., Fernández-Calleja, L., Pérez-Valero, Á., Tuñón-Granda, M., ... & Lombó, F. (2021). Terpenoids and polyphenols as natural antioxidant agents in food preservation. Antioxidants, 10(8), 1264. https://doi.org/10.3390/antiox10081264
[7] Papadochristopoulos, A., Kerry, J. P., Fegan, N., Burgess, C. M., & Duffy, G. (2021). Natural anti-microbial for enhanced microbial safety and shelf-life of processed packaged meat. Foods, 10(7), 1598. https://doi.org/10.3390/foods10071598
[8] Pedreiro, S., Figueirinha, A., Silva, A. S., & Ramos, F. (2021). Bioactive edible films and coatings based in gums and starch: Phenolic enrichment and foods application. Coatings, 11(11), 1393. https://doi.org/10.3390/coatings11111393
[9] Rehman, S., Mufti, I. U., Ain, Q. U., & Ijaz, B. (2024). Bioactive compounds and biological activities of red beetroot (Beta vulgaris L.). In Bioactive Compounds in the Storage Organs of Plants. Cham: Springer Nature Switzerland, 845-875. https://doi.org/10.1007/978-3-031-44746-4_42
[10] Ebrahimi, P., Bayram, I., Lante, A., & Decker, E. A. (2024). Antioxidant and prooxidant activity of acid‐hydrolyzed phenolic extracts of sugar beet leaves in oil‐in‐water emulsions. Journal of the American Oil Chemists' Society. https://doi.org/10.1002/aocs.12891
[11] Tirado-Kulieva, V., Atoche-Dioses, S., & Hernández-Martínez, E. (2021). Phenolic compounds of mango (Mangifera indica) by-products: Antioxidant and antimicrobial potential, use in disease prevention and food industry, methods of extraction and microencapsulation. Scientia Agropecuaria, 12(2), 283-293. http://dx.doi.org/10.17268/sci.agropecu.2021.031
[12] Rifna, E. J., Misra, N. N., & Dwivedi, M. (2023). Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: A review. Critical Reviews in Food Science and Nutrition, 63(6), 719-752. https://doi.org/10.1080/10408398.2021.1952923
[13] Khadhraoui, B., Ummat, V., Tiwari, B. K., Fabiano-Tixier, A. S., & Chemat, F. (2021). Review of ultrasound combinations with hybrid and innovative techniques for extraction and processing of food and natural products. Ultrasonics Sonochemistry, 76, 105625. https://doi.org/10.1016/j.ultsonch.2021.105625
[14] Chavan, P., Sharma, P., Sharma, S. R., Mittal, T. C., & Jaiswal, A. K. (2022). Application of high-intensity ultrasound to improve food processing efficiency: A review. Foods, 11(1), 122. https://doi.org/10.3390/foods11010122
[15] Fernando, G. S. N., Wood, K., Papaioannou, E. H., Marshall, L. J., Sergeeva, N. N., & Boesch, C. (2021). Application of an ultrasound-assisted extraction method to recover betalains and polyphenols from red beetroot waste. ACS Sustainable Chemistry & Engineering, 9(26), 8736-8747. https://doi.org/10.1021/acssuschemeng.1c01203
[16] Monasterio, A., Núñez, E., Brossard, N., Vega, R., & Osorio, F. A. (2023). Mechanical and surface properties of edible coatings elaborated with Nanoliposomes encapsulating grape seed tannins and polysaccharides. Polymers, 15(18), 3774. https://doi.org/10.3390/polym15183774
[17] Cebrián, P., Pérez-Sienes, L., Sanz-Vicente, I., López-Molinero, Á., de Marcos, S., & Galbán, J. (2022). Solving Color Reproducibility between Digital Devices: A Robust Approach of Smartphones Color Management for Chemical (Bio) Sensors. Biosensors, 12(5), 341. https://doi.org/10.3390/bios12050341
[18] Cano, A.; Andres, M.; Chiralt, A.; González-Martinez, C. Use of tannins to enhance the functional properties of protein-based films. Food Hydrocolloids. 2020, 100, 105443. https://doi.org/10.1016/j.foodhyd.2019.105443
[19] Monasterio, A., & Osorio, F. A. (2024). Physicochemical Properties of Nanoliposomes Encapsulating Grape Seed Tannins Formed with Ultrasound Cycles. Foods, 13(3), 414. https://doi.org/10.3390/foods13030414
[20] Sridhar, K.; Charles, A.L. (2019). In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: Estimation methods for EC50 using advanced statistical programs. Food Chemistry. 275, 41–49. https://doi.org/10.1016/j.foodchem.2018.09.040
[21] Alemán, A.; Marín, D.; Taladrid, D.; Montero, P.; Gómez-Guillén, M.C. (2019). Encapsulation of antioxidant sea fennel (Crithmum maritimum) aqueous and ethanolic extracts in freeze-dried soy phosphatidylcholine liposomes. Food Research International. 119, 665–674. https://doi.org/10.1016/j.foodres.2018.10.044
[22] Nirmal, N. P., Khanashyam, A. C., Mundanat, A. S., Shah, K., Babu, K. S., Thorakkattu, P., ... & Pandiselvam, R. (2023). Valorization of Fruit Waste for Bioactive Compounds and Their Applications in the Food Industry. Foods, 12(3), 556. https://doi.org/10.3390/foods12030556
[23] Nanda, A., Mohapatra, B. B., Mahapatra, A. P. K., Mahapatra, A. P. K., & Mahapatra, A. P. K. (2021). Multiple comparison test by Tukey’s honestly significant difference (HSD): Do the confident level control type I error. International Journal of Statistics and Applied Mathematics, 6(1), 59-65. https://doi.org/10.22271/maths.2021.v6.i1a.636
[24] Marzo, C., Díaz, A. B., Caro, I., & Blandino, A. (2020). Conversion of exhausted sugar beet pulp into fermentable sugars from a biorefinery approach. Foods, 9(10), 1351. https://doi.org/10.3390/foods9101351
[25] Dygas, D., Kręgiel, D., & Berłowska, J. (2023). Sugar beet pulp as a biorefinery substrate for designing feed. Molecules, 28(5), 2064. https://doi.org/10.3390/molecules28052064
[26] Hassan, E., Fadel, S., Abou-Elseoud, W., Mahmoud, M., & Hassan, M. (2022). Cellulose nanofibers/pectin/pomegranate extract nanocomposite as antibacterial and antioxidant films and coating for paper. Polymers, 14(21), 4605. https://doi.org/10.3390/polym14214605
[27] Molina, A. K., Corrêa, R. C., Prieto, M. A., Pereira, C., & Barros, L. (2023). Bioactive natural pigments’ extraction, isolation, and stability in food applications. Molecules, 28(3), 1200. https://doi.org/10.3390/molecules28031200
[28] Ebrahimi, P., Mihaylova, D., Marangon, C. M., Grigoletto, L., & Lante, A. (2022). Impact of sample pretreatment and extraction methods on the bioactive compounds of sugar beet (Beta vulgaris L.) leaves. Molecules, 27(22), 8110. https://doi.org/10.3390/molecules27228110
[29] Solaberrieta, I., Mellinas, C., Jiménez, A., & Garrigós, M. C. (2022). Recovery of antioxidants from tomato seed industrial wastes by microwave-assisted and ultrasound-assisted extraction. Foods, 11(19), 3068. https://doi.org/10.3390/foods11193068
[30] Montenegro-Landívar, M. F., Tapia-Quirós, P., Vecino, X., Reig, M., Valderrama, C., Granados, M., ... & Saurina, J. (2021). Recovery of added-value compounds from orange and spinach processing residues: green extraction of phenolic compounds and evaluation of antioxidant activity. Antioxidants, 10(11), 1800. https://doi.org/10.3390/antiox10111800
[31] Xu, Y., Deng, Q., Ruan, C., Xu, D., & Zeng, K. (2024). Application of carboxymethyl cellulose and its edible composite coating in fruit preservation. Packaging Technology and Science, 37(8), 781-792. https://doi.org/10.1002/pts.2822
[32] Shahidi, F., & Hossain, A. (2023). Importance of insoluble-bound phenolics to the antioxidant potential is dictated by source material. Antioxidants, 12(1), 203. https://doi.org/10.3390/antiox12010203
[33] Lobiuc, A., Pavăl, N. E., Mangalagiu, I. I., Gheorghiță, R., Teliban, G. C., Amăriucăi-Mantu, D., & Stoleru, V. (2023). Future antimicrobials: Natural and functionalized phenolics. Molecules, 28(3), 1114. https://doi.org/10.3390/molecules28031114
[34] El Hassani, N. E. A., Baraket, A., & Alem, C. (2025). Recent advances in natural food preservatives: a sustainable solution for food safety and shelf life extension. Journal of Food Measurement and Characterization, 19, 293-315. https://doi.org/10.1007/s11694-024-02969-x
[35] Ucar, Y., Durmus, M., & Özogul, Y. (2025). Natural preservatives for fish and seafood. In Natural Preservatives for Food. 193-220. https://doi.org/10.1016/B978-0-323-95614-7.00009-0
[36] Ozuna-Valencia, K. H., Moreno-Vásquez, M. J., Graciano-Verdugo, A. Z., Rodríguez-Félix, F., Robles-García, M. Á., Barreras-Urbina, C. G., ... & Tapia-Hernández, J. A. (2024). The application of organic and inorganic nanoparticles incorporated in edible coatings and their effect on the physicochemical and microbiological properties of seafood. Processes, 12(9), 1889. https://doi.org/10.3390/pr12091889
[37] Olunusi, S. O., Ramli, N. H., Fatmawati, A., Ismail, A. F., & Okwuwa, C. C. (2024). Revolutionizing tropical fruits preservation: Emerging edible coating technologies. International Journal of Biological Macromolecules, 130682. https://doi.org/10.1016/j.ijbiomac.2024.130682
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Angela Monasterio-Aranda, Laura Almendares-Calderón, Emerson Núñez-Ferrada, Gabriela Medina-Pérez

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.