Péptidos bioactivos como anticancerígenos y antimicrobianos

Autores/as

DOI:

https://doi.org/10.29057/icap.v12i23.15431

Palabras clave:

Péptido antibacteriano, Péptido modificado, Terapia contra cáncer, Cepas

Resumen

Los microorganismos son las formas de vida más abundantes en el planeta, siendo muchos de ellos potencialmente patógenos para otros seres vivos. Tanto plantas como animales han evolucionado combatiendo el ataque constante de microorganismos mediante el desarrollo de sistemas de defensa que varían en complejidad de acuerdo al grado evolutivo del organismo. En los últimos años se han descrito diversas moléculas efectoras de la respuesta innata dentro de las que se encuentran las proteínas de bajo peso molecular, conocidas como péptidos antimicrobianos, aunque combaten un amplio espectro de microorganismos, debido a su mecanismo de acción, estos péptidos no afectan a las células eucariotas, portal motivo, los péptidos antimicrobianos se están estudiando intensamente y se están ensayando como agentes antimicrobianos para la aplicación biotecnológica como agentes terapéuticos. Aquí, se realizó una revisión de aquellos péptidos bioactivos con actividad antimicrobiana y anticancerígena para su potencial uso.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

[1] Zhang D, He Yu, Ye Y, Ma Y, Zhang P, Xu N, Liang S. Little Antimicrobial Peptides with Big Therapeutic Roles. Bentham Science. Protein & Peptide Letters 2019, 26(8):564-578. doi:10.2174/1573406415666190222141905.

[2] Mygind P, Fischer R, Schnorr K, Hansen M, Sonksen C, Ludvigsen S, Raventós D, Buskov S, Christensen B, De Maria L, Taboureau, Yaver D, Elving-Jorgensen S, Sorensen M, Christensen B, Kjaerulff S, Frimodt-Moller N, Lehrer R, Zasloff M, Kristensen H. Plectasin is a peptide antibiotic with therapeutic potencial from a saprophytic fungus. Nature. 437 2005, 13;437(7061):975-80. doi: 10.1038/nature04051.

[3] Farzaneh P, Khanahamadi M, Ehsani M, Sharifan A. Bioactive properties of Agarius bisporus and Terfezia clavery proteins hydrolyzed by gastrointestinal proteases. LWT-Food Sciencie and Technology 2018, 91, 322-329. https://doi.org/10.1016/j.lwt.2018.01.044

[4] Robles-Hernández L, Salas-Salazar NA, Gonzalez-Franco AC. Purification and Characterization of Antibacterial Activity against Phytopathogenic Bacteria in Culture Fluids from Ganoderma lucidum. Molecules 2021, 26(18):5553. https://doi.org/10.3390/molecules26185553

[5] Kim S, Kim S, Bang Y, Kim S, Lee B. In vitro activities of native and designed peptide antibiotics against drug sensitive and resistant tumor cell lines.Comparative Study. Peptides 2003, 24(7):945-53. doi: 10.1016/s0196-9781(03)00194-3.

[6] Banan-Mwine E,Lee B, H Oh Deog. Bioactive peptides. Foods 2017, 26;6(5): 32.doi: 10.3390/foods6050032.

[7] Michelsen C, Jensen H, Venditto V, Hennessy R, Stougaard P. Bioactivities by a crude extract from the Greenlandic Pseudomonas sp. In5 involves the nonribosomal peptides, nunamycin and nunapeptin. PeerJ 2015, 3:3: e1476. doi: 10.7717/peerj.1476.

[8] Jenssen H, Hancock R. Antimicrobial properties of lactoferrin. Biochimie 2009, 91(1):19-29. doi: 10.1016/j.biochi.2008.05.015.

[9] Bryksa B, Horimoto Y, Yada R. Rational redesign of porcine pepsinogen containing an antimicrobial peptide. Protein Engineering, Design & Selection 2010, 23(9): 711-9.doi: 10.1093/protein/gzq039.

[10] Orona T, Valdeverde M, Paredes O. Bioactive peptides from selected latin american food crops – A nutraceutical and molecular approach. Critical Reviews in Food Science and Nutrition 2019, 59(12):1949-1975. doi: 10.1080/10408398.2018.1434480.

[11] Bowdish D, Davidson D, Hancock R, A re-evaluation of the role of host defence peptides inmammalian immunity. Curr Protein Pept Science 2005, 6(1): 35-51.doi: 10.2174/1389203053027494.

[12] Huang J, Hao D, Chen Y, Xu Y, Tan J, Huang Y, Li F, Chen Y. Inhibitory effects and mechanisms of physiological conditions on the activity of enantiomeric forms of an -helical antibacterial peptide against bacteria. Peptides 2011, 32(7):1488-95.doi: 10.1016/j.peptides.2011.05.023.

[13] Görgüç A, Gençdağ E, Mehmet F. Bioactive peptides derived from plant origin by-products: Biological activities and techno-functional utilizations in food developments – A review. Food Research International 2020, 136:109504. doi: 10.1016/j.foodres.2020.109504.

[14] Abadía L, Cardador A, Martín S, Arvízu S, Castaño E, Regalado C, García B, Amaya, S. Influence of probiotic strains added to cottage cheese on generation of potentially antioxidant peptides, anti-listerial activity, and survival of probiotic microorganisms in simulated gastrointestinal conditions. International Dairy Journal 2013, http://dx.doi.org/10.1016/j.idairyj.2013.04.005

[15] Hoek KS, Milne JM, Grieve PA, Dionysius DA, Smith R. Antibacterial activity of bovine lactoferrin-derived peptides. Antimicrobial Agents and Chemotherapy 1997, 41(1):54-9. doi: 10.1128/AAC.41.1.54.

[16] Recio I, Visser S. Two ion-exchange chromatographic methods for the isolation of antibacterial peptides from lactoferrin: In situ enzymatic hydrolysis on an ion-exchange membrane. Journal of Chromatography 1999, 831. 191-201. doi: 10.1016/s0021-9673(98)00950-9

[17] Vorland LH, Ulvatne H, Rekdal O, Svendsen J. Initial binding sites of antimicrobial peptides in Staphylococcus aureus and Escherichia coli. Comparative Study. Scandinavian Journal of Infectious Diseases 1999, 31(5):467-73. doi: 10.1080/00365549950163987.

[18] Hammer J, Haheim H, Gutterberg T. Bovine lactoferrin is more efficient than bovine lactoferricin in inhibiting HSV-I/II replication in vitro. In K. Shimazaki. Amsterdam, the Netherlands: Elsevier science, 2000.

[19] Isfari D, Deepak K, Roostita B, Gemilang L, Ami R. Potential of cheese whey bioactive proteins and peptides in the development of antimicrobial edible film composite: A review of recent trends. Trends in Food & Technology 2020, 103. 57-67. https://www.sciencedirect.com/science/article/abs/pii/S0924224420305185

[20] Seedi H, Wahed A, Yosri N, Musharraf S, Chen L, Moustafa M, Zou X, Mousawi S, Guo Z, Khatib A, Khalifa S. Antimicrobial Properties of Apis mellifera’s Bee Venom. Toxins. MDPI. China 2020, 11;12(7): 451.doi: 10.3390/toxins12070451.

[21] Kim S, Hwang Y, Sung M, Je S, Bae D, Han S, Lee S. The minimum inhibitory concentration (MIC) of bee venom against bacteria isolated from pigs and chickens. Korean J. Vet. Serv 2005, 29, 19–26. https://www.researchgate.net/publication/254255359_The_Minimum_Inhibitory_Concentration_MIC_of_Bee_Venom_Against_Bacteria_Isolated_from_Pigs_and_Chickens

[22] Samy R, Gopalakrishnakone P, Thwin M, Chow TKV, Bow H, Yap EH, Thong TWJ. Antibacterial activity of snake, scorpion and bee venoms: A comparison with purified venom phospholipase A2 enzymes. J. Appl. Microbiol 2007, 102(3):650-9. doi: 10.1111/j.1365-2672.2006.03161. x.

[23] Han SM, Kim JM, Hong IP, Woo SO, Kim SG, Jang HR, Pak SC. Antibacterial activity and antibiotic-enhancing effects of honeybee venom against methicillin-resistant Staphylococcus aureus. Molecules 2016, 12;21(1):79. doi: 10.3390/molecules21010079.

[24] Flávia A, Pereira M, Albano M, Cristina F, Alves B, Fernanda B, Teles M, Furlanetto A, Mores V, Delazari L, Olivera R, Fernandes A. Influence of apitoxin and melittin from Apis mellifera bee on Staphylococcus aureus strains. Microb. Pathog 2020, 141: 104011.doi: 10.1016/j.micpath.2020.104011.

[25] Leandro LF, Mendes C, Casemiro L, Vinholis A, Cunha W, Almeida R, Martins C. Antimicrobial activity of apitoxin, melittin and phospholipase A 2 of honey bee (Apis mellifera) venom against oral pathogens. An. Acad. Bras. Cienc 2015, 87(1):147-55. doi: 10.1590/0001-3765201520130511.

[26] Louie B, Rajamahanty S, Won J, Choudhury M, Konno S. Synergistic potentiation of interferon activity with maitake mushroom D-fraction on bladder cancer cells. BJUI INTERNATIONAL. Departament of Urology, New York Medical College. USA 2009, 105(7): 1011-5.doi: 10.1111/j.1464-410X.2009.08870. x.

[27] Lalitha P, Veena V, Vidhyapriya P, Lakshmi P, Krishna R, Sakthivel N. Anticancer potential of pyrrole (1, 2, a) pyrazine 1, 4, dione, hexahydro 3-(2-methyl propyl) (PPDHMP) extracted from a new marine bacterium, Staphylococcus sp. strain MB30. CrossMark. Springer Science+Business Media New York 2016, 21(5): 566-77.doi: 10.1007/s10495-016-1221-x.

[28] Miller WR, Scott WN, Morris R, Fraser HM, Sharpe RM. Growth of human breast cancer cells inhibited by a luteinizing hormone-releasing hormone agonist, Nature 1985, 313(5999): 231-3.doi: 10.1038/313231a0.

[29] Kamaraj KP, Naik RP, Veena V, Lakshmi BS, Lakshmi P, Krishna R, Sakthivel N. 5-Methyl phenazine-1-carboxylic acid: A novel bioactive metabolite by a rhizosphere soil bacterium that exhibits potent antimicrobial and anticancer activities. Elsevier Ireland. Chemico-Biological Interactions 2015, 25:231:71-82. doi: 10.1016/j.cbi.2015.03.002.

[30] Baig M, Ahmad K, Saeed M, Alharbi A, Barreto G, Ashraf G, Choi I. Peptide based therapeutics and their use for the treatment of neurodegenerative and other diseases.ELSEVIER. Biomedicine & Pharmacotherapy 2018, 103: 574-581.doi: 10.1016/j.biopha.2018.04.025.

[31] Leite N, Aufderhorst A, Palma M, Connell S, Neto J, Beales P. PE and PS Lipids Synergistically Enhance Membrane Poration by a Peptide with Anticancer Properties. Biophysical Journal. Sao Paulo, Brazil 2015, 1;109(5):936-47. doi: 10.1016/j.bpj.2015.07.033.

[32] Wiesner J, Vilcinskas A. Antimicrobial peptides: the ancient arm of the human immune system, Virulence 2010, 1(5):440-64. doi: 10.4161/viru.1.5.12983.

[33] Mansour S, Pena O, Hancock R. Host defense peptides: front-line immunomodulators, Trends Immunol 2014, 35(9):443-50. doi: 10.1016/j.it.2014.07.004.

[34] Cai X, Guo L, Pei F, Chang X, Zhang R. Polyphyllin G exhibits antimicrobial activity and exerts anticancer effects on human oral cancer OECM-1 cells by triggering G2/M cell cycle arrest by inactivating cdc25C-cdc2. ELSEVIER. Archives of Biochemistry and Biophysics 2018, 15:644:93-99. doi: 10.1016/j.abb.2018.01.008.

[35] Piaz F, Imparato S, Lepore L, Bader A, Tommasi N. A fast and efficient LC–MS/MS method for detection, identification and quantitative analysis of bioactive sesterterpenes in Salvia dominica crude extracts. Journal of Pharmaceutical and Biomedical Analysis 2010, 5;51(1):70-7. doi: 10.1016/j.jpba.2009.08.006.

[36] Crusca E, Guilherme L, Waness F, Marchettoa R Biophysical characterization and antitumor activity of synthetic Pantinin peptides from scorpion's venom. ELSEVIER. BBA – Biomembranes 2018, 1860(11):2155-2165. doi: 10.1016/j.bbamem.2018.08.012.

[37] Dongdon W, Yanfeng G, Yuanming Q, Lixiang C, Yuanfang M, Li Y. Peptide-based cáncer therapy: Opportunity and challenge .Cancer letters 2014, 28;351(1):13-22. doi: 10.1016/j.canlet.2014.05.002.

[39] Won HS, Seo MD, Jung SJ, Lee SJ, Kang SJ, Son WS, Kim HJ, Park TK, Lee BJ. Structural determinants for the membrane interaction of novel 645 bioactive undecapeptides derived from gaegurin 2006, 10;49(16):4886-95. doi: 10.1021/jm050996u.

[40] Kang SJ, Ji HY, Lee BJ. Anticancer Activity of Undecapeptide Analogues Derived from Antimicrobial Peptide, Brevinin-1Ema. Archives of pharmacal research 200, 791-799, 2012. doi: 10.1007/s12272-012-0505-0

[41] Margaret A. Riley MA, Wertz JE. Bacteriocins: Evolution, Ecology, and Application. Annual Review of Microbiology 2002, 56:117-137. https://doi.org/10.1146/annurev.micro.56.012302.161024

[42] Simons A, Alhanout K, Duval RE. Bacteriocins, Antimicrobial Peptides from Bacterial Origin: Overview of Their Biology and Their Impact against Multidrug-Resistant Bacteria. Microorganisms 2020, 8(5):639. doi: 10.3390/microorganisms8050639.

Descargas

Publicado

2026-01-05

Cómo citar

Olguín-Vargas , S. I., Gutiérrez-Nava , T. E., Quezada-Maravilla , E. A., Ocampo-López, J., Carreón Camacho, D. P., & Zepeda Bastida, A. (2026). Péptidos bioactivos como anticancerígenos y antimicrobianos. Boletín De Ciencias Agropecuarias Del ICAP, 12(23), 70–75. https://doi.org/10.29057/icap.v12i23.15431