Multirresistencia en bacterias Gram positivas asociadas a mastitis caprina en Venustiano-Carranza, Michoacán, México
DOI:
https://doi.org/10.29057/icap.v12i23.15700Palabras clave:
Mastitis, Resistencia farmacológica, Staphylococcus, salud pública, salud animalResumen
La mastitis caprina es la principal enfermedad del ganado lechero. Se caracteriza por la inflamación de la glándula mamaria y las bacterias Gram positivas son las principales agentes causales. Las terapias antimicrobianas son rutinarias para el control de la mastitis, sin embargo, su empleo inadecuado, han propiciado la selección de cepas resistentes a múltiples antibióticos (RMA), representando un problema de salud pública y animal. El objetivo del presente trabajo fue determinar la resistencia a antibióticos en bacterias Gram positivas asociadas a mastitis caprina en el municipio de Venustiano Carranza, Michoacán. Obtuvimos 37 aislados y 19 resultaron RMA, de los cuales identificamos molecularmente a tres (como Staphylococcus spp,) por ser los que presentaron resistencia a seis grupos de antibióticos. La mayor resistencia se observó en Penicilina (100 %), Cefalotina (78.4 %) y Clindamicina y Dicloxacina (75.7 %). Este es el primer reporte de Staphylococcus RMA en casos de mastitis caprina en la zona de estudio, lo cual evidencia la problemática de salud pública asociada a la aparición de microorganismos multirresistentes.
Descargas
Citas
Lu CD, Miller BA. Current status, challenges and prospects for dairy goat production in the Americas. Asian-Australasian Journal of Animal Science 2019;32(8):1244–1255. https://doi.org/10.5713/ajas.19.0256
SIAP. Servicio de Información Agroalimentaria y Pesquera. Avance de la producción pecuaria por estado. Secretaría de Agricultura y Desarrollo Rural. México. México. 2023.
Tajonar K, López Díaz, CA, Sánchez Ibarra LE, Chay-Canul AJ, Gonzalez-Ronquillo M, Vargas-Bello-Pérez E. A brief update on the challenges and prospects for goat production in Mexico. Animal: An Open Access Journal from MDPI 2022;12(7): 837. https://doi.org/10.3390/ani12070837
Medina-Estrada I, Alva-Murillo N, López-Meza JE, Ochoa-Zarzosa A. Immunomodulatory effects of 17β-Estradiol on epithelial cells during bacterial infections. Journal of Immunology Research 2018;2018:6098961. https://doi.org/10.1155/2018/6098961
León-Galván MaF, Barboza-Corona JE, Lechuga-Arana AA, Valencia-Posadas M, Aguayo DD, Cedillo-Peláez C, Martínez-Ortega EA, Gutiérrez-Chávez AJ. Molecular detection and sensitivity to antibiotics and bacteriocins of pathogens isolated from bovine mastitis in family dairy herds of Central Mexico. BioMed Research International 2015;2015:615153. https://doi.org/10.1155/2015/615153
Praja RN, Yudhana A, Saputro AL, Hamonangan JM. The first study on antimicrobial resistance of Staphylococcus aureus isolated from raw goat milk associated with subclinical mastitis in Siliragung Subdistrict, East Java, Indonesia. Veterinary World 2023;16(4): 786–791. https://doi.org/10.14202/vetworld.2023.786-791
Michael CK, Lianou DT, Vasileiou NGC, Mavrogianni VS, Petinaki E, Fthenakis GC. Longitudinal study of subclinical mastitis in sheep in Greece: An investigation into incidence risk, associations with milk quality and risk factors of the infection. Animal: An Open Access Journal from MDPI, 2023;13(20):3295. https://doi.org/10.3390/ani13203295
McEwen SA, Collignon PJ. Antimicrobial resistance: A one health perspective. Microbiology Spectrum, 2018;6(2). https://doi.org/10.1128/microbiolspec.ARBA-0009-2017
Camacho-Silvas LA, Portillo-Gallo JH, Rivera-Cisneros AE, Sánchez-González JM, Franco-Santillán R, Duque-Rodríguez J, Velo-Méndez G, Ishida-Gutiérrez C. Multidrug, extended and pan-resistance to antimicrobials at the North of México. Cirugía y Cirujanos 2021;89(4): 426–434. https://doi.org/10.24875/CIRU.20000304
Andrade NC, Laranjo M, Costa MM, Queiroga MC. Virulence factors in Staphylococcus associated with small ruminant mastitis: biofilm production and antimicrobial resistance genes. Antibiotics (Basel, Switzerland) 2021;10(6):633. https://doi.org/10.3390/antibiotics10060633
Polveiro RC, Granja MMC, Roldão TCB, Da Silva Lopes I, Vidigal PMP, Lima MC, Moreira MAS. Multilocus sequence analysis reveals genetic diversity in Staphylococcus aureus isolate of goat with mastitis persistent after treatment with Enrofloxacin. Scientifics Reports 2021;11(1):17252. https://doi.org/10.1038/s41598-021-96764-z
Suwito W, Nugroho WS, Adji RS, Andriani A, Kusumaningtyas E, Martini T. Phenotypic characteristic of Staphylococcus aureus from subclinical mastitis in Etawah-crossbreed goats in Yogyakarta, Indonesia. Veterinary World 2022;15(11): 2587–2592. https://doi.org/10.14202/vetworld.2022.2587-2592
Alós JI. Resistencia bacteriana a los antibióticos: una crisis global. Enfermedades Infecciosas y Microbiología Clínica 2015;33(10):692-699. https://doi.org/10.1016/j.eimc.2014.10.004
Lima MC, de Barros M, Scatamburlo TM, Polveiro RC, de Castro LK, Guimarães SHS, da Costa SL, da Costa MM, Moreira MAS. Profiles of Staphyloccocus aureus isolated from goat persistent mastitis before and after treatment with Enrofloxacin. BMC Microbiology, 2020;20(1):127. https://doi.org/10.1186/s12866-020-01793-9
Javed MU, Ijaz M, Durrani AZ, Ali MM. On-farm epidemiology, virulence profiling, and molecular characterization of methicillin-
resistant Staphylococcus aureus at goat farms. Microbial Pathogenesis, 2023;185:106456. https://doi.org/10.1016/j.micpath.2023.106456
De Vliegher S, Fox LK, Piepers S, McDougall S, Barkema HW.Invited review: Mastitis in dairy heifers: Nature of the disease, potential impact, prevention, and control. Journal of Dairy Science 2021; 95(3):1025–1040. https://doi.org/10.3168/jds.2010-4074
Novac CS, Andrei S. The impact of mastitis on the biochemical parameters, oxidative and nitrosative stress markers in goat's milk: A review. Pathogens (Basel, Switzerland) 2020;9(11):882. https://doi.org/10.3390/pathogens9110882
Menzies P. Udder health for dairy goats. Veterinary Clinics of North America: Food Animal Practice 2021;37(1):149–174. https://doi.org/10.1016/j.cvfa.2020.12.002
INEGI. Instituto Nacional de Estadística y Geografía. Panorama Sociodemográfico de México 2020. México 2020.
Rivas-Zuñiga SC, Giraldo-Aristizábal CI. Manual práctico de microbiología básica 1ª ed. Editorial Universidad del Cauca. Colombia. 2021:15-57.
Casasola-Bado MJ. Importance of a correct Gram stain in identifying bacteria. RCMQCCR 2022;27(2):89-98.
Humphries RM, Ambler J, Mitchell SL, Castanheira M, Dingle T, Hindler JA, Koeth L, Sei K, CLSI Methods Development and Standardization Working Group of the Subcommittee on Antimicrobial Susceptibility Testing. CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. Journal of Clinical Microbiology 2018;56(4):e01934-17. https://doi.org/10.1128/JCM.01934-17
The European Committee On Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 14.0, 2024.
Javadi A, Shamaei M, Mohammadi Ziazi L, Pourabdollah M, Dorudinia A, Seyedmehdi SM, Karimi S. Qualification study of two genomic DNA extraction methods in different clinical samples. Tanaffos 2014:13(4):41–47.
Frutis-Murillo M, Sandoval-Carrillo MA, Alva-Murillo N, Ochoa-Zarzosa A, López-Meza JE. Immunomodulatory molecules regulate adhesin gene expression in Staphylococcus aureus: Effect on bacterial internalization into bovine mammary epithelial cells. Microbial Pathogenesis 2019:131:15-21. https://doi.org/10.1016/j.micpath.2019.03.030
Tamura K, Stecher G, Kumar S. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution 2021;38(7): 3022-3027. https://doi.org/10.1093/molbev/msab120
Robles-Yerena L, Rodríguez-Mendoza J, Santoyo G, Ochoa-Alvarado XI, Medina-Estrada RI, Jiménez-Mejía R, Loeza-Lara PD. Phylogenetic identification of fungi isolated from strawberry and papaya fruits and their susceptibility to fatty acids. Canadian Journal of Plant Pathology 2022;44(6):828–835. https://doi.org/10.1080/07060661.2022.2084457
Arteche-Villasol N, Fernández M, Gutiérrez-Expósito D, Pérez V. Pathology of the mammary gland in sheep and goats. Journal of Comparative Pathology 2022;193: 37–49. https://doi.org/10.1016/j.jcpa.2022.02.007
Abdalhamed AM, Zeedan GSG, Zeina HAAA. Isolation and identification of bacteria causing mastitis in small ruminants and their susceptibility to antibiotics, honey, essential oils, and plant extracts. Veterinary World 2018;11(3):355–362. https://doi.org/10.14202/vetworld.2018.355-362
Michael CK, Lianou DT, Vasileiou NGC, Tsilipounidaki K, Katsafadou AI, Politis AP, Kordalis NG, Ioannidi KS, Gougoulis DA, Trikalinou C, Orfanou DC, Fragkou IA, Kontou PI, Liagka DV, Mavrogianni VS, Petinaki E, Fthenakis GC. Association of Staphylococcal populations on teatcups of milking parlours with vaccination against Staphylococcal mastitis in sheep and goat farms. Pathogens (Basel, Switzerland), 2021;10(4):385. https://doi.org/10.3390/ani13203295
Exel CE, Geus Y, Spaninks M, Koop G, Benedictus L. Colonization of extramammary sites with mastitis-associated S. aureus strains in dairy goats. Pathogens (Basel, Switzerland) 2023;12(4):515. https://doi.org/10.3390/pathogens12040515
Rafailidis PI, Kofteridis D. Proposed amendments regarding the definitions of multidrug-resistant and extensively drug-resistant bacteria. Expert Review of Anti Infective Therapy 2022;20(2):139–146. https://doi.org/10.1080/14787210.2021.1945922
Bar-Gal GK, Blum SE, Hadas L, Ehricht R, Monecke S, Leitner G. Host-specificity of Staphylococcus aureus causing intramammary infections in dairy animals assessed by genotyping and virulence genes. Veterinary Microbiology 2015;176(1-2):143–154. https://doi.org/10.1016/j.vetmic.2015.01.007
Boireau C, Cazeau G, Jarrige N, Calavas D, Madec JY, Leblond A, Haenni M, Gay É. Antimicrobial resistance in bacteria isolated from mastitis in dairy cattle in France, 2006-2016. Journal of Dairy Science, 2018;101(10):9451–9462. https://doi.org/10.3168/jds.2018-14835
Sharifi A, Sobhani K, Mahmoudi P. A systematic review and meta-analysis revealed a high-level antibiotic resistance of bovine mastitis Staphylococcus aureus in Iran. Research in Veterinary Science 2023;161: 23–30. https://doi.org/10.1016/j.rvsc.2023.05.016
Garcia-Bustos V, Cabañero-Navalón MD, Salavert Lletí M. Resistance to beta-lactams in Gram-negative bacilli: relevance and potential therapeutic alternatives. Revista Española de Quimioterapia 2022;Suppl 2(Suppl 2):1-15. https://doi.org/10.37201/req/s02.01.2022
Gabli Z, Djerrou Z, Gabli AE, Bensalem M. Prevalence of mastitis in dairy goat farms in Eastern Algeria. Veterinary World 2019;12(10):1563–1572. https://doi.org/10.14202/vetworld.2019.1563-1572
Kotzamanidis C, Vafeas G, Giantzi V, Anastasiadou S, Mygdalias S, Malousi A, Loukia E, Daniel S, Zdragas A. Staphylococcus aureus isolated from ruminants with mastitis in Northern Greece dairy herds: Genetic relatedness and phenotypic and genotypic characterization. Toxins 2021;13(3):176. https://doi.org/10.3390/toxins13030176
Medina-Estrada I, López-Meza JE, Ochoa-Zarzosa A. Non-classical effects of prolactin on the innate immune response of bovine mammary epithelial cells: Implication during Staphylococcus aureus internalization. Microbial Pathogenesis, 2015;89:43-53. https://doi.org/10.1016/j.micpath.2015.08.018
Tang KWK, Millar BC, Moore JE. Antimicrobial Resistance (AMR). British Journal of Biomed Science 2023;80: 11387. https://doi.org/10.3389/bjbs.2023.11387
Bhattacharyya D, Banerjee J, Bandyopadhyay S, Mondal B, Nanda PK, Samanta I, Mahanti A, Das AK, Das G, Dandapat P, Bandyopadhyay S. First report on vancomycin-resistant Staphylococcus aureus in bovine and caprine milk. Microbial Drug Resistance (Larchmont, N.Y.) 2016;22(8):675–681. https://doi.org/10.1089/mdr.2015.0330
Gutiérrez-Chávez JA, Martínez-Ortega EA, Valencia-Posadas M, León-Galván MF, de la Fuente-Salcido NM, Bideshi DK, Barboza-Corona JE. Potential use of Bacillus thuringiensis bacteriocins to control antibiotic-resistant bacteria associated with mastitis in dairy goats. Folia Microbiology 2016;61(1):11-9. https://doi.org/10.1007/s12223-015-0404-0
Liu X, Zuo J, Teng J, Yang L, Guo J, Liu L, Li P. Antibiofilm potential of luteolin against multidrug-resistant Staphylococcus aureus isolated from dairy goats and farm environments. Environ Pollut (Barking, Essex: 1987), 2023;335:122274. https://doi.org/10.1016/j.envpol.2023.122274
Danmallam FA, Pimenov NV. Study on prevalence, clinical presentation, and associated bacterial pathogens of goat mastitis in Bauchi, Plateau, and Edo states, Nigeria. Veterinary World 2019;12(5):638–645. https://doi.org/10.14202/vetworld.2019.638-645
Rosa NM, Penati M, Fusar-Poli S, Addis MF, Tola S. Species identification by MALDI-TOF MS and gap PCR-RFLP of non-aureus Staphylococcus, Mammaliicoccus, and Streptococcus spp. associated with sheep and goat mastitis. Veterinary Research 2022;53(1):84. https://doi.org/10.1186/s13567-022-01102-4
Bernier GV, Dufour S, Adkins PRF, Middleton JR. Persistence of coagulase negative Staphylococcal intramammary infections in dairy goats. Journal of Dairy Research 2019;86(2):211–216. https://doi.org/10.1017/S0022029919000311
Abboud Z, Galuppo L, Tolone M, Vitale M, Puleio R, Osman M, Loria GR, Hamze M. Molecular characterization of antimicrobial resistance and virulence genes of bacterial pathogens from bovine and caprine mastitis in Northern Lebanon. Microorganisms 2021;9(6):1148. https://doi.org/10.3390/microorganisms9061148
Wesolowska M, Szczuka E. Occurrence and antimicrobial resistance among Staphylococci isolated from the skin microbiota of healthy goats and sheep. Antibiotics (Basel, Switzerland) 2023;12(11): 1594. https://doi.org/10.3390/antibiotics12111594
Chu C, Yu C, Lee Y, Su Y. Genetically divergent methicillin-resistant Staphylococcus aureus and sec-dependent mastitis of dairy goats in Taiwan. BMC Veterinary Research 2012;8:39. https://doi.org/10.1186/1746-6148-8-39
Álvarez-Narváez S, Huber L, Giguère S, Hart KA, Berghaus RD, Sanchez S, Cohen ND. Epidemiology and molecular basis of multidrug resistance in Rhodococcus equi. Microbiology and Molecular Biology Reviews: MMBR 2021;85(2):e00011-21. https://doi.org/10.1128/MMBR.00011-21
Nada HG, El-Tahan AS, El-Didamony G, Askora A. Detection of multidrug-resistant Shiga toxin-producing Escherichia coli in some food products and cattle faeces in Al-Sharkia, Egypt: One health menace. BMC Microbiology, 2023;23(1):127. https://doi.org/10.1186/s12866-023-02873-2
OMS. Organización Mundial de la Salud. One Health. Organización Mundial de la Salud. 2017. https://www.who.int/news-room/questions-and-answers/item/one-health
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Monica Guadalupe Sánchez Ceja, José Antonio Aguilar López, Juan Carlos Coyazo Aceves, Rafael Jiménez Mejía, Pedro Damián Loeza Lara, Ricardo Iván Medina Estrada

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.








