Bacteriófagos aislados de peces: una alternativa biotecnológica para el control de enfermedades en acuicultura
DOI:
https://doi.org/10.29057/icap.v12i23.16522Palabras clave:
Bacteriófago, biotecnología acuícolaResumen
Los bacteriófagos aislados de peces constituyen una alternativa biotecnológica innovadora para el control de enfermedades bacterianas en la acuicultura. Estos virus, están ampliamente distribuidos y desempeñan un papel esencial en la regulación de las comunidades microbianas. Su aplicación en fagoterapia se está consolidado como una estrategia sostenible frente al uso excesivo de antibióticos, debido a su capacidad para eliminar bacterias patógenas sin afectar el microbiota ni generar residuos ambientales. Los fagos se clasifican principalmente en líticos, que destruyen a la célula bacteriana mediante lisis, y lisogénicos, que integran su genoma en el hospedero bacteriano, participando en la transferencia de genes y en la dinámica microbiana. Diversos estudios han documentado la eficacia de fagos líticos aislados de peces y ambientes acuáticos frente a patógenos de importancia sanitaria, como Aeromonas hydrophila, Vibrio anguillarum, Edwardsiella ictaluri, Flavobacterium psychrophilum, Nocardia seriolae, Streptococcus agalactiae entre otros. Entre los fagos más relevantes destacan PAh4, PZL-Ah152, Ahy-Yong1, PVN02, PVN06, FpV4, FpV9, FpV21, vB_VhaS_MAG7, VHML, VhKM4 y NS-I, los cuales han mostrado una alta estabilidad térmica, capacidad lítica y eficacia frente a cepas multirresistentes. Estos hallazgos respaldan el desarrollo de cocteles fágicos como herramientas de biocontrol aplicables tanto en sistemas de agua dulce como marina, favoreciendo la sanidad de los organismos cultivados y la sostenibilidad productiva.
Descargas
Citas
[1] FAO. In brief to The State of World Fisheries and Aquaculture 2024: Blue transformation in action [Internet]. Rome: FAO; 2024 [citado 2025 sep 6]. Disponible en: https://doi.org/10.4060/cd0690en
[2] Amillano-Cisneros JM, Fuentes-Valencia MA, Leyva-Morales JB, Savín-Amador M, Márquez-Pacheco H, Bastidas-Bastidas PJ, Leyva-Camacho L, De la Torre-Espinosa ZY, Badilla-Medina CN. Effects of Microorganisms in Fish Aquaculture from a Sustainable Approach: A Review. Microorganisms. 2025;13(3):485. doi: 10.3390/microorganisms13030485.
[3] Mohammed EAH, Kovács B, Kuunya R, Mustafa EOA, Abbo ASH, Pál K. Antibiotic Resistance in Aquaculture: Challenges, Trends Analysis, and Alternative Approaches. Antibiotics (Basel). 2025;14(6):598. https://doi.org/10.3390/antibiotics14060598
[4] Albarella D, Dall'Ara P, Rossi L, Turin L. Bacteriophage Therapy in Freshwater and Saltwater Aquaculture Species. Microorganisms. 2025;13(4):831. doi: 10.3390/microorganisms13040831.
[5] Liu R, Han G, Li Z, Cun S, Hao B, Zhang J, Liu X. Bacteriophage therapy in aquaculture: current status and future challenges. Folia Microbiol (Praha). 2022;67(4):573–590. doi: 10.1007/s12223-022-00965-6.
[6] Huang Y, Wang W, Zhang Z, Gu Y, Huang A, Wang J, Hao H. Phage Products for Fighting Antimicrobial Resistance. Microorganisms. 2022;10(7):1324. doi: 10.3390/microorganisms10071324.
[7] Liang X, Yang S, Radosevich M, Wang Y, Duan N, Jia Y. Bacteriophage-driven microbial phenotypic heterogeneity: ecological and biogeochemical importance. NPJ Biofilms Microbiomes. 2025;11(1):82. doi: 10.1038/s41522-025-00727-5.
[8] Efenberger-Szmechtyk M, Nowak A. Bacteriophage Power: Next-Gen Biocontrol Strategies for Safer Meat. Molecules. 202530(17):3641. doi: 10.3390/molecules30173641.
[9] Kasman LM, Porter LD. Bacteriophages. 2022 Sep 26. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan.
[10] Chen Q, Dharmaraj T, Cai PC, Burgener EB, Haddock NL, Spakowitz AJ, Bollyky PL. Bacteriophage and Bacterial Susceptibility, Resistance, and Tolerance to Antibiotics. Pharmaceutics. 202214(7):1425. doi: 10.3390/pharmaceutics14071425.
[11] Shang J, Wang K, Zhou Q, Wei Y. The Role of Quorum Sensing in Phage Lifecycle Decision: A Switch Between Lytic and Lysogenic Pathways. Viruses. 2025;17(3):317. doi: 10.3390/v17030317.
[12] Quirós P, Colomer-Lluch M, Martínez-Castillo A, Miró E, Argente M, Jofre J, Navarro F, Muniesa M. Antibiotic resistance genes in the bacteriophage DNA fraction of human fecal samples. Antimicrob Agents Chemother. 2014;58(1):606–609. doi: 10.1128/AAC.01684-13.
[13] Thierauf A, Perez G, Maloy AS. Generalized transduction. Methods Mol Biol. 2009;501,267–286. doi: 10.1007/978-1-60327-164-6_23.
[14] Lin A, Jimenez J, Derr J, Vera P, Manapat ML, Esvelt KM, Villanueva L, Liu DR, Chen IA. Inhibition of bacterial conjugation by phage M13 and its protein g3p: quantitative analysis and model. PLoS One. 2011;6(5):e19991. doi: 10.1371/journal.pone.0019991.
[15] Jun JW. A Concise Overview of Studies on Successful Real-World Applications of Bacteriophages in Aquaculture. Viruses. 2024;16(12):1843. doi: 10.3390/v16121843.
[16] Akmal M, Rahimi-Midani A, Hafeez-Ur-Rehman M, Hussain A, Choi TJ. Isolation, Characterization, and Application of a Bacteriophage Infecting the Fish Pathogen Aeromonas hydrophila. Pathogens. 2020;9(3):215. doi: 10.3390/pathogens9030215.
[17] Dien LT, Ky LB, Huy BT, Mursalim MF, Kayansamruaj P, Senapin S, Rodkhum C, Dong HT. Characterization and protective effects of lytic bacteriophage pAh6.2TG against a pathogenic multidrug-resistant Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus). Transbound Emerg Dis. 2022;69(4):e435–e450. doi: 10.1111/tbed.14321.
[18] Feng C, Jia K, Chi T, Chen S, Yu H, Zhang L, Haidar Abbas Raza S, Alshammari AM, Liang S, Zhu Z, Li T, Qi Y, Shan X, Qian A, Zhang D, Zhang L, Sun W. Lytic bacteriophage PZL-Ah152 as biocontrol measures against lethal Aeromonas hydrophila without distorting gut microbiota. Front Microbiol. 2022;13:898961. doi: 10.3389/fmicb.2022.898961.
[19] Jun JW, Kim JH, Shin SP, Han JE, Chai JY, Park SC. Protective effects of the Aeromonas phages pAh1-C and pAh6-C against mass mortality of the cyprinid loach (Misgurnus anguillicaudatus) caused by Aeromonas hydrophila. Aquaculture. 2013;416–417:289–295. doi: 10.1016/j.aquaculture.2013.09.045.
[20] Pan L, Li D, Lin W, Liu W, Qu C, Qian M, Cai R, Zhou Q, Wang F, Tong Y. Novel Aeromonas phage Ahy-Yong1 and its protective effects against Aeromonas hydrophila in brocade carp (Cyprinus aka koi). Viruses. 2022;14(11):2498. doi: 10.3390/v14112498.
[21] Phumkhachorn P, Rattanachaikunsopon P. Use of bacteriophage to control experimental Aeromonas hydrophila infection in tilapia (Oreochromis niloticus). Pak J Biol Sci. 2020;23(12):1659–1665. doi: 10.3923/pjbs.2020.1659.1665.
[22] Zulkarneev ER, Aleshkin AV, Kiseleva IA, Rubalsky EO, Rubalsky OV. Bacteriophage cocktail effectively prolonging the shelf-life of chilled fish. Bull Exp Biol Med. 2019;167(6):818–822. doi: 10.1007/s10517-019-04630-w.
[23] Droubogiannis S, Pavlidi L, Skliros D, Flemetakis E, Katharios P. Comprehensive characterization of a novel bacteriophage, vB_VhaS_MAG7 against a fish pathogenic strain of Vibrio harveyi and its in vivo efficacy in phage therapy trials. Int J Mol Sci. 2023;24(9):8200. doi: 10.3390/ijms24098200.
[24] Lal TM, Sano M, Ransangan J. Isolation and characterization of large marine bacteriophage (Myoviridae), VhKM4 infecting Vibrio harveyi. J Aquat Anim Health. 2017;29(1):26–30. doi: 10.1080/08997659.2016.1249578.
[25] Xu K, Wang Y, Yang W, Cai H, Zhang Y, Huang L. Strategies for Prevention and Control of Vibriosis in Asian Fish Culture. Vaccines (Basel). 2022;11(1):98. doi: 10.3390/vaccines11010098.
[26] Zhang XH, He X, Austin B. Vibrio harveyi: a serious pathogen of fish and invertebrates in mariculture. Mar Life Sci Technol. 2020;2(3):231–245. doi: 10.1007/s42995-020-00037-z.
[27] García-Domínguez M. Characterization of mutants of the fish pathogen Flavobacterium psychrophilum. Methods Cell Biol. 2025;197:1–16. doi: 10.1016/bs.mcb.2025.07.001.
[28] Castillo D, Christiansen RH, Dalsgaard I, Madsen L, Middelboe M. Bacteriophage resistance mechanisms in the fish pathogen Flavobacterium psychrophilum: linking genomic mutations to changes in bacterial virulence factors. Appl Environ Microbiol. 2015;81(3):1157–1167. doi: 10.1128/AEM.03699-14.
[29] Dang THO, Xuan TTT, Duyen LTM, Le NP, Hoang HA. Protective efficacy of phage PVN02 against haemorrhagic septicaemia in striped catfish Pangasianodon hypophthalmus via oral administration. J Fish Dis. 2021;44(8):1255–1263. doi: 10.1111/jfd.13387.
[30] Olsen AB, Spilsberg B, Nilsen HK, Lagesen K, Gulla S, Avendaño-Herrera R, Irgang R, Duchaud E, Colquhoun DJ. Tenacibaculum piscium sp. nov., isolated from skin ulcers of sea-farmed fish, and description of Tenacibaculum finnmarkense sp. nov. with subdivision into genomovars finnmarkense and ulcerans. Int J Syst Evol Microbiol. 2020;70(12):6079–6090. doi: 10.1099/ijsem.0.004501.
[31] Tsertou MI, Triga A, Droubogiannis S, Kokkari C, Anasi G, Katharios P. Isolation and characterization of a novel Tenacibaculum species and a corresponding bacteriophage from a Mediterranean fish hatchery: description of Tenacibaculum larymnensis sp. nov. and Tenacibaculum phage Larrie. Front Microbiol. 2023;14:1078669. doi: 10.3389/fmicb.2023.1078669.
[32] Akmal M, Araki K, Nishiki I, Yoshida T. Isolation and complete genome sequencing of NS-I, a lytic bacteriophage infecting fish pathogenic strains of Nocardia seriolae. Phage (New Rochelle). 2023;4(4):151–158. doi: 10.1089/phage.2023.0019.
[33] Huang C, Feng C, Liu X, Zhao R, Wang Z, Xi H, Ou H, Han W, Guo Z, Gu J, Zhang L. The bacteriophage vB_CbrM_HP1 protects crucian carp against Citrobacter braakii infection. Front Vet Sci. 2022;9:888561. doi: 10.3389/fvets.2022.888561.
[34] Li J, Yan B, He B, Li L, Zhou X, Wu N, Wang Q, Guo X, Zhu T, Qin J. Development of phage resistance in multidrug-resistant Klebsiella pneumoniae is associated with reduced virulence: a case report of a personalised phage therapy. Clin Microbiol Infect. 2023;29(12):1601.e1–1601.e7. doi: 10.1016/j.cmi.2023.08.022.
[35] Li C, Zhang Y, Peng Y, Zhang G, Xie J, Long X, Qian L, Hu Y, Hu S. SXP01: a novel bacteriophage for combating Shewanella xiamenensis in aquaculture. Front Microbiol. 2025;16:1652450. doi: 10.3389/fmicb.2025.1652450.
[36] Abdel-Razek N, Khalil RH, Abdelrahiem TMM, Fathi M, Metwaly SA. Isolation and in vitro evaluation of bacteriophage therapy targeting Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus): a potential approach to sustainable disease management in aquaculture. J Fish Dis. 2025,7:e70019. doi: 10.1111/jfd.70019.
[37] Schulz P, Pajdak-Czaus J, Robak S, Dastych J, Siwicki AK. Bacteriophage-based cocktail modulates selected immunological parameters and post-challenge survival of rainbow trout (Oncorhynchus mykiss). J Fish Dis. 2019;42(8):1151–1160. doi: 10.1111/jfd.13026.
[38] Easwaran M, Dananjaya SHS, Park SC, Lee J, Shin HJ, De Zoysa M. Characterization of bacteriophage pAh-1 and its protective effects on experimental infection of Aeromonas hydrophila in zebrafish (Danio rerio). J Fish Dis. 2017;40(6):841–846. doi: 10.1111/jfd.12536.
[39] Janelidze N, Jaiani E, Didebulidze E, Kusradze I, Kotorashvili A, Chalidze K, Porchkhidze K, Khukhunashvili T, Tsertsvadze G, Jgenti D, Bajashvili T, Tediashvili M. Phenotypic and genetic characterization of Aeromonas hydrophila phage AhMtk13a and evaluation of its therapeutic potential on simulated Aeromonas infection in Danio rerio. Viruses. 2022;14(2):412. doi: 10.3390/v14020412.
[40] Ye Y, Tong G, Chen G, Huang L, Huang L, Jiang X, Wei X, Lin M. The characterization and genome analysis of a novel phage phiA034 targeting multiple species of Aeromonas. Virus Res. 2023,15;336:199193. doi: 10.1016/j.virusres.2023.199193.
[41] Hoang AH, Tran TTX, Le PN, Dang THO. Selection of phages to control Aeromonas hydrophila—an infectious agent in striped catfish. Biocontrol Sci. 2019;24(1):23–28. doi: 10.4265/bio.24.23.
[42] Yu H, Zhang L, Feng C, Chi T, Qi Y, Abbas Raza SH, Gao N, Jia K, Zhang Y, Fan R, Cai R, Qian A, Li Y, Sun W, Shan X, Liu N, Zhang L. A phage cocktail in controlling phage resistance development in multidrug-resistant Aeromonas hydrophila with great therapeutic potential. Microb Pathog. 2022;162:105374. doi: 10.1016/j.micpath.2021.105374.
[43] Rai S, Tyagi A, BTNK. Oral feed-based administration of phage cocktail protects rohu fish (Labeo rohita) against Aeromonas hydrophila infection. Arch Microbiol. 2024;206(5):219. doi: 10.1007/s00203-024-03951-3.
[44] Le TS, Nguyen TH, Vo HP, Doan VC, Nguyen HL, Tran MT, Tran TT, Southgate PC, Kurtböke Dİ. Protective effects of bacteriophages against Aeromonas hydrophila species causing motile Aeromonas septicemia (MAS) in striped catfish. Antibiotics (Basel). 2018;7(1):16. doi: 10.3390/antibiotics7010016.
[45] Gordola KMC, Boctuanon FAU, Diolata RAA, Pedro MBD, Gutiérrez TAD, Papa RDS, Papa DMD. Evaluation of phage delivery systems on induced motile Aeromonas septicemia in Oreochromis niloticus. Phage (New Rochelle). 2020;1(4):189–197. doi: 10.1089/phage.2020.0020.
[46] Silva YJ, Moreirinha C, Pereira C, Costa L, Rocha RJM, Cunha A, Gomes NCM, Calado R, Almeida A. Biological control of Aeromonas salmonicida infection in juvenile Senegalese sole (Solea senegalensis) with phage AS-A. Aquaculture. 2016;450:225–233. doi: 10.1016/j.aquaculture.2015.07.025.
[47] Xu Z, Jin P, Zhou X, Zhang Y, Wang Q, Liu X, Shao S, Liu Q. Isolation of a virulent Aeromonas salmonicida subsp. masoucida bacteriophage and its application in phage therapy in turbot (Scophthalmus maximus). Appl Environ Microbiol. 2021;87(21):e0146821. doi: 10.1128/AEM.01468-21.
[48] Luo X, Liao G, Fu X, Liang H, Niu Y, Lin Q, Liu L, Ma B, Li N. A novel and effective therapeutic method for treating Aeromonas schubertii infection in Channa maculata. Animals (Basel). 2024;14(6):957. doi: 10.3390/ani14060957.
[49] To H Ngoc, Dang T H Oanh, LE T M Duyen, Tran T T Xuan, Hoang A Hoang, & LE P Nga. Bacteriophage PVN06 protected catfish Pangasianodon hypophthalmus from Edwardsiella ictaluri infection. Journal of microorganism control, 2023, 28(2), 57–64. doi: 10.4265/jmc.28.2_57
[50] Katharios P, Kalatzis PG, Kokkari C, Sarropoulou E, Middelboe M. Isolation and characterization of a N4-like lytic bacteriophage infecting Vibrio splendidus, a pathogen of fish and bivalves. PLoS One. 2017;12(12):e0190083. doi: 10.1371/journal.pone.0190083.
[51] Landor LAI, Ruffo V, Traving SJ, Middelboe M. Phage therapy in finfish aquaculture: how to get there? Trends Microbiol. 2025, 8:S0966-842X(25)00245-8. doi: 10.1016/j.tim.2025.08.002.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Paulina Quiroz Ballesteros, Nydia Edith Reyes Rodríguez, Víctor Manuel Martínez Juárez , Margarita Islas Pelcastre , Juana Juárez Muñoz , Erick Castillo Muñoz

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.








