Alternativas para mejorar la calidad nutrimental de panes libres de gluten

Palabras clave: Libre de gluten, reducir grasa, valor nutrimental

Resumen

La incidencia en pacientes con enfermedad celíaca crea una alta demanda de productos libres de gluten sin embargo estos son de muy mala calidad por lo que la industria alimentaria propone varias alternativas para mejorar su valor nutrimental, una de ellas es el uso de tubérculos libres de gluten que aporten nutrientes; por ejemplo, la malanga. También se ha buscado remplazar o reducir la grasa por algunos tipos de fibras, harinas y gomas. La siguiente investigación recopila esas propuestas para ampliar el panorama sobre la importancia de resolver este problema.

Descargas

La descarga de datos todavía no está disponible.

Citas

Adeboye, A. S., Fayemi, O. E., Bamgbose, A., Adewunmi, A., & Sobowale, S. S. (2018). Towards the development of peanut–wheat flour composite dough: Influence of reduced-fat peanut flour on bread quality. Journal of Food Processing and Preservation, 42(1). https://doi.org/10.1111/jfpp.13385

Balic, R., Miljkovic, T., Ozsisli, B., & Simsek, S. (2017a). Utilization of Modified Wheat and Tapioca Starches as Fat Replacements in Bread Formulation. Journal of Food Processing and Preservation, 41(1). https://doi.org/10.1111/jfpp.12888

Calle, J., Benavent-gil, Y., & Rosell, C. M. (2020). Food Hydrocolloids Development of gluten free breads from Colocasia esculenta fl our blended with hydrocolloids and enzymes. Food Hydrocolloids, 98(June 2019), 105243. https://doi.org/10.1016/j.foodhyd.2019.105243

Clareto, S. S., Nelson, D. L., Júlia, A., & Pereira, G. (2006). BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY Influence of a Protein Concentrate Used as a Fat Substitute on the Quality of Cheese Bread. Brazilian Archives of Biology and Technology, 49, 1019–1025. http://www.scielo.br/pdf/babt/v49n6/a20v49n6.pdf

Drabińska, N., Zieliński, H., & Krupa-Kozak, U. (2016). Technological benefits of inulin-type fructans application in gluten-free products – A review. Trends in Food Science and Technology, 56, 149–157. https://doi.org/10.1016/j.tifs.2016.08.015

Eslava-Zomeño, C., Quiles, A., & Hernando, I. (2016). Designing a Clean Label Sponge Cake with Reduced Fat Content. Journal of Food Science, 81(10), C2352–C2359. https://doi.org/10.1111/1750-3841.13446

Espino-Manzano, S., Güemes-Vera, N., Chanona-Pérez, J. J., Bernardino-Nicanor, A., Hernández-Uribe, J. P., Castañeda-Ovando, A., Piloni-Martini, J., & Alanís-García, E. (2018). Quality Evaluation of Gluten-free Danish Bread Employing Different Flours and Starches. Food Science and Technology Research, 24(5), 785–794. https://doi.org/10.3136/fstr.24.785

Esteller, M. S., Amaral, R. L., & Da Silva Lannes, S. C. (2004). Effect of sugar and FAT replacers on the texture of baked goods. Journal of Texture Studies, 35(4), 383–393. https://doi.org/10.1111/j.1745-4603.2004.tb00602.x

Fernandes, S. S., & Salas-Mellado, M. de las M. (2017). Addition of chia seed mucilage for reduction of fat content in bread and cakes. Food Chemistry, 227, 237–244. https://doi.org/10.1016/j.foodchem.2017.01.075

Huerta, K. da M., Boeira, C. P., Soquetta, M. B., Alves, J. dos S., Kubota, E. H., & da Rosa, C. S. (2018). The effect of chia (Salvia hispanic L.) flour as a substitute for fat in gluten-free bread. Nutrition and Food Science. https://doi.org/10.1108/NFS-08-2018-0240

James, E. O., Peter, I. A., Charles, N. I., & Joel, N. (2015). Chemical Composition and Effect of Processing and Flour Particle Size on Physicochemical and Organoleptic Properties of Cocoyam (Colocasia esculenta var. esculenta) Flour. Nigerian Food Journal, 31(2), 113–122. https://doi.org/10.1016/s0189-7241(15)30084-9

Joseph, E., & Ru, Y. (2013). Low Fat Corn Bread. Journal of the Academy of Nutrition and Dietetics, 113(9), A44. https://doi.org/10.1016/j.jand.2013.06.149

Kahraman, G., Harsa, S., Lucisano, M., & Cappa, C. (2018). LWT - Food Science and Technology Physicochemical and rheological properties of rice-based gluten-free blends containing di ff erently treated chickpea fl ours. LWT - Food Science and Technology, 98(May), 276–282. https://doi.org/10.1016/j.lwt.2018.08.040

Keenan, D. F., Resconi, V. C., Kerry, J. P., & Hamill, R. M. (2014). Modelling the influence of inulin as a fat substitute in comminuted meat products on their physico-chemical characteristics and eating quality using a mixture design approach. Meat Science, 96(3), 1384–1394. https://doi.org/10.1016/j.meatsci.2013.11.025

Kittisuban, P., Ritthiruangdej, P., & Suphantharika, M. (2014). Optimization of hydroxypropylmethylcellulose, yeast β-glucan, and whey protein levels based on physical properties of gluten-free rice bread using response surface methodology. LWT - Food Science and Technology, 57(2), 738–748. https://doi.org/10.1016/j.lwt.2014.02.045

Kovrlija, R., & Rondeau-Mouro, C. (2017). Multi-scale NMR and MRI approaches to characterize starchy products. Food Chemistry, 236, 2–14. https://doi.org/10.1016/j.foodchem.2017.03.056

Kumoro, A. C., Putri, R. D. A., Budiyati, C. S., Retnowati, D. S., & Ratnawati. (2014). Kinetics of Calcium Oxalate Reduction in Taro (Colocasia Esculenta) Corm Chips during Treatments Using Baking Soda Solution. Procedia Chemistry, 9, 102–112. https://doi.org/10.1016/j.proche.2014.05.013

López-Tenorio, J. A., Rodríguez-Sandoval, E., & Sepúlveda-Valencia, J. U. (2015). The Influence of Different Emulsifiers on the Physical and Textural Characteristics of Gluten-Free Cheese Bread. Journal of Texture Studies, 46(4), 227–239. https://doi.org/10.1111/jtxs.12121

Mabhaudhi, T., Modi, A. T., & Beletse, Y. G. (2014). Parameterisation and evaluation of the FAO-AquaCrop model for a South African taro (Colocasia esculenta L. Schott) landrace. Agricultural and Forest Meteorology, 192–193, 132–139. https://doi.org/10.1016/j.agrformet.2014.03.013

Malanga, D., & Actopan, D. (2018). Caracterización física y nutricional de harina del tubérculo de “Malanga” (Colocasia esculenta L. Schott) de Actopan, Veracruz, México. 68, 175–183.

Morris, C., & Morris, G. A. (2012). The effect of inulin and fructo-oligosaccharide supplementation on the textural, rheological and sensory properties of bread and their role in weight management: A review. Food Chemistry, 133(2), 237–248. https://doi.org/10.1016/j.foodchem.2012.01.027

Mouliney, M., Lavery, B., Sharma, R., & Jenner, C. (2011). Waxy durum and fat differ in their actions as improvers of bread quality. Journal of Cereal Science, 54(3), 317–323. https://doi.org/10.1016/j.jcs.2011.06.009

Ng, S. H., Robert, S. D., Wan Ahmad, W. A. N., & Wan Ishak, W. R. (2017). Incorporation of dietary fibre-rich oyster mushroom (Pleurotus sajor-caju) powder improves postprandial glycaemic response by interfering with starch granule structure and starch digestibility of biscuit. Food Chemistry, 227, 358–368. https://doi.org/10.1016/j.foodchem.2017.01.108

Patil, S. P., & Arya, S. S. (2017). Nutritional, functional, phytochemical and structural characterization of gluten-free flours. Journal of Food Measurement and Characterization, 11(3), 1284–1294. https://doi.org/10.1007/s11694-017-9506-5

Pereira, P. R., Silva, J. T., Verícimo, M. A., Paschoalin, V. M. F., & Teixeira, G. A. P. B. (2015). Crude extract from taro (Colocasia esculenta) as a natural source of bioactive proteins able to stimulate haematopoietic cells in two murine models. Journal of Functional Foods, 18, 333–343. https://doi.org/10.1016/j.jff.2015.07.014

Rodríguez-García, J., Puig, A., Salvador, A., & Hernando, I. (2012). Optimization of a Sponge Cake Formulation with Inulin as Fat Replacer: Structure, Physicochemical, and Sensory Properties. Journal of Food Science, 77(2). https://doi.org/10.1111/j.1750-3841.2011.02546.x

Rodríguez, J., Rivadeneyra, J. M., Ramírez, E., Juárez, J. M., Herrera, E., Navarro, R., & Hernández, B. (2011). Caracterización fisicoquímica, funcional y contenido fenólico de harina de malanga (Colocasia esculenta) cultivada en la región de Tuxtepec, Oaxaca, México. Ciencia y Mar, 15(43), 37–47.

Rubio-tapia, A. (2018). Clinical guidelines on the diagnosis and treatment of celiac disease in Mexico ଝ. 83(4), 434–450. https://doi.org/10.1016/j.rgmxen.2018.09.007

Sciarini, L. S., Ribotta, P. D., León, A. E., & Pérez, G. T. (2012). Incorporation of several additives into gluten free breads: Effect on dough properties and bread quality. Journal of Food Engineering, 111(4), 590–597. https://doi.org/10.1016/j.jfoodeng.2012.03.011

Shin, W. K., Wicker, L., & Kim, Y. (2017). HPMC (hydroxypropyl methylcellulose) as a fat replacer improves the physical properties of low-fat tofu. Journal of the Science of Food and Agriculture, 97(11), 3720–3726. https://doi.org/10.1002/jsfa.8233

Simsek, S., & El, S. N. (2012). Production of resistant starch from taro (Colocasia esculenta L. Schott) corm and determination of its effects on health by in vitro methods. Carbohydrate Polymers, 90(3), 1204–1209. https://doi.org/10.1016/j.carbpol.2012.06.039

Song, K. Y., O, H., Joung, K. Y., Shin, S. Y., & Kim, Y. S. (2017). Effects of basil (Ocimum Basilicum L.) seed mucilage substituted for fat source in sponge cake: Physicochemical, structural, and retrogradation properties. Italian Journal of Food Science, 29(4), 681–696.

Tomaschunas, M., Zörb, R., Fischer, J., Köhn, E., Hinrichs, J., & Busch-Stockfisch, M. (2013). Changes in sensory properties and consumer acceptance of reduced fat pork Lyon-style and liver sausages containing inulin and citrus fiber as fat replacers. Meat Science, 95(3), 629–640. https://doi.org/10.1016/j.meatsci.2013.06.002

Torres, A., Durán, M., & Montero, P. (2013). Evaluación de las propiedades funcionales del almidón obtenido a partir de malanga (Colocasia esculenta) El almidón constituye una excelente materia prima para modificar la textura y consistencia de los alimentos. Su funcionalidad depende del peso mole. 8(2), 29–38.

Xu, J., Wang, W., & Li, Y. (2019). Dough properties, bread quality, and associated interactions with added phenolic compounds: A review. Journal of Functional Foods, 52(September 2018), 629–639. https://doi.org/10.1016/j.jff.2018.11.052

Yano, H., Fukui, A., Kajiwara, K., Kobayashi, I., & Yoza, K. (2017). LWT - Food Science and Technology Development of gluten-free rice bread : Pickering stabilization as a possible batter-swelling mechanism. LWT - Food Science and Technology, 79, 632–639. https://doi.org/10.1016/j.lwt.2016.11.086

Yousif, A., Nhepera, D., & Johnson, S. (2012). Influence of sorghum flour addition on flat bread in vitro starch digestibility, antioxidant capacity and consumer acceptability. Food Chemistry, 134(2), 880–887. https://doi.org/10.1016/j.foodchem.2012.02.199

Publicado
2021-01-05
Cómo citar
Rodríguez - Flores, R. V., & Güemes-Vera, N. (2021). Alternativas para mejorar la calidad nutrimental de panes libres de gluten. Boletín De Ciencias Agropecuarias Del ICAP, 7(13), 11-15. https://doi.org/10.29057/icap.v7i13.6713