Uso de recubrimientos a base de nanoemulsión como alternativa para conservar la calidad poscosecha del jitomate

Palabras clave: Recubrimiento, nanoemulsión, compuestos bioactivos, jitomate

Resumen

Hoy en día la industria alimentaria busca nuevas tecnologías que permitan aumentar la vida útil de productos frescos. Los recubrimientos alimenticios son una tecnología económica y amigable con el medio ambiente, dichas capas de recubrimiento pueden desarrollarse de lípidos, polisacáridos y proteínas funcionando como barreras contra el vapor de agua, los gases, y otros solutos. El uso de nanoemulsiones como recubrimiento proporciona un excelente sistema de liberación de ingredientes funcionales, como los agentes antimicrobianos y antioxidantes, mejorando así la calidad y extendiendo la vida útil de frutas y hortalizas frescas o mínimamente procesadas.

Descargas

La descarga de datos todavía no está disponible.

Citas

Antunes, M. D., Rodrigues, D., Pantazis, V., Cavaco, A. M., Siomos, A. S., & Graca, M. (2013). Nutritional Quality Changes of Fresh-cut Tomato during Shelf Life. Food Science and Biotechnology, 22(5), 1229-1236. https://doi.org/10.1007/s10068-013-0206-6

SIAP.Servicio de Información Agroalimentaria y Pesquera. (2018).

Hussen, S. (2014). Ethylene as a Postharvest “Evil” and its Remedies in some Horticultural Crops . Greener Journal of Plant Breeding and Crop Science , 34-40. https://www.researchgate.net/publication/292963213

Navarro, M. (2007). Efecto de la composición de recubrimientos comestibles a base de hidroxipropilmetilcelulosa y cera de abeja en la calidad de ciruelas, naranjas y mandarinas. Tesis doctoral. España: Universidad Politécnica de Valéncia. Departamento de Tecnología de Alimentos.

Ranjan, S., Dasgupta, N., Chakraborty, A. R., & Melvin, S. (2014). Nanoscience and Nanotechnologies in Food Industries: Opportunities and Research Trends. Journal of Nanoparticle Research, 16(6), 147-152. https://www.researchgate.net/publication/262309141

Baldwin, E., Níspero-Carriedo, M., & Baker, R. (1995). Use of edible coatings to preserve quality of lightly (and slightly) processed products. Food Sci. Nutr. , 509-524. https://doi.org/10.1080/10408399509527713

Valdés, A., Mellinas, A., Ramos, M., Burgos, N., Jiménez, A., & Garrigós, M. (2015). Use of herbs, spices and their bioactive compounds in active food packaging. RSC Advances, 5(50), 40324-40335. https://doi.org/10.1039/C4RA17286H

Hernández-Fuentes, A., Trapala-Islas, A., Gallegos-Vásquez, C., Campos-Montiel, R., Pinedo-Espinoza, J., & Guzmán-Maldonado, S. (2015). Physicochemical variability and nutritional and functional characteristics of xoconostles (Opuntia spp.) accessions from Mexico. Fruits, 70(2), 109-116. https://doi.org/10.1051/fruits/2015002

Espinosa-Muñoz, V., Roldán-Cruz, C., Hernández-Fuentes, A., Quintero-Lira, A., Almaraz-Buendía, I., & Campos-Montiel, R. (2016). Ultrasonic‐Assisted Extraction of Phenols, Flavonoids, and Biocompounds with Inhibitory Effect Against Salmonella Typhimurium and Staphylococcus Aureus from Cactus Pear. Journal of Food Process Engineering, 40(2), e12358. https://doi.org/10.1111/jfpe.12358

Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2011). Use of essential oils in bioactive adible coatings. Food Engineering Reviews, 1-16. https://doi.org/10.1007/s12393-010-9031-3

Tenorio-Domínguez, M. (2016). Flavonoids extracted from orange peelings tangelo (Citrus reticulata x Citrus paradisi) and their application as a natural antioxidant in sacha inchi (Plukenetia volubilis) vegetable oil. Scientia Agropecuaria, 7(4), 419-431. https://doi.org/10.17268/sci.agropecu.2016.04.07

Vinha, A. F., Alves, R. C., Barreira, S. V., Castro, A., Costa, A. S., & Oliveira, M. P. (2014). Effect of peel and seed removal on the nutritional value and antioxidant activity of tomato (Lycopersicon esculentum L.) fruits. LWT - Food Science and Technology, 55, 197-202. http://dx.doi.org/10.1016/j.lwt.2013.07.016

USDA. Departamento de Agricultura de los Estados Unidos. (2017). https://www.usda.gov/

Lobato Ortiz, R., Rodríguez Guzmán, E., Carillo Rodríguez, J., Chávez Servia, J., Sánchez Peña, P., & Aguilar Meléndez, A. (2012). Exploración, colecta y conservación de recursos genéticos de jitomate: avances en la Red de Jitomate. Sistema Nacional de Recursos Fitogenéticos para la Alimentación y la Agricultura (SINAREFI), 54.

TRADE MAP. Trade statistics for international business development. (2018). https://www.trademap.org/Index.aspx

SAGARPA. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. (2018). https://www.gob.mx/cms/uploads/attachment/file/257077/Potencial-Jitomate.pdf

Salas-Méndez, E. d., Pinheiro, A. C., Ballesteros, L. F., Silva, P., Rodríguez-García, R., Hernández-Castillo, F. D., . . . de Rodríguez, D. J. (2019). Application of edible nanolaminate coatings with antimicrobial extract of Flourensia cernua to extend the shelf-life of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 150, 19-27. https://doi.org/10.1016/j.postharvbio.2018.12.008

Mutari, A., & Debbie, R. (2011). The effects of postharvest handling and storage temperature on the quality and shelf of tomato. African Journal of Food Science , 340-348. https://doi.org/10.5897/AJFS.9000283

FAO. (2017). Reducir pérdidas de alimentos y lograr sistemas alimentarios sostenibles. Recomendaciones de políticas públicas para México. http://www.fao.org/3/i7053s/i7053s.pdf

Ruíz, J., Vicente, A., Montañéz-Saenz, J. C., Rodríguez-Herrera, R., & Aguilar-González, C. N. (2012). Un tesoro perecedero en México: el tomate, tecnologías para prolongar su vida de anaquel. Investigación y Ciencia: Universidad Autónoma de Aguascalientes, 57-63. http://www.redalyc.org/articulo.oa?id=67424408008

Sharma, P., Shehin, V. P., Kaur, N., & Vyas, P. (2019). Application of edible coatings on fresh and minimally processed vegetables: a review. International Journal of Vegetable Science., 295-314. https://doi.org/10.1080/19315260.2018.1510863

Eissa, H. A. (2007). Effect of chitosan coating on shelf life and quality of fresh-cut mushroom. Journal of Food Quality, 623-645. https://www.researchgate.net/publication/229777424

Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6), 292-303. https://www.researchgate.net/publication/275969518

Dhall, R. (2013). Advances in edible coatings for fresh fruits and vegetables: a review. Critical Reviews in Food Science and Nutrition, 53(5), 435-450. https://doi.org/10.1080/10408398.2010.541568

Hall, D. J. (2011). Edible coatings from lipids, waxes, and resins. En D. J. Hall, Edible Coatings and Films to Improve Food Quality (págs. 79-101). CRC Press.

McClements, D. (2005). Food Emulsions: Principles, Practices, and Techniques. Boca Raton, FL: CRC Press.

Shakeel, F., Talegaonkar, S., Ahmad, F., Khar, R., Ali, M., & Shafiq, S. (2007). Development and bioavailability assessment of ramipril nanoemulsion formulation. European Journal of Pharmaceutics and Biopharmaceutics, 227-243. https://doi.org/10.1016/j.ejpb.2006.10.014

McClements, D. J. (2012). Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, 8(6), 1719-1729. https://doi.org/10.1039/C2SM06903B

Choi, A., Kim, C., Cho, Y., Hwang, J., & Kim, C. (2011). Characterization of capsaicin-loaded nanoemulsions stabilized with alginate and chitosan by self-assembly. Food and Bioprocess Technology, 4(6), 1119-1126. https://doi.org/10.1007/s11947-011-0568-9

McClements, D. (1999). Food emulsions. Principles, practice and techniques. Florida, EE.UU.: Press LLC.

Abbas, S., Hayat, K., Karanqwa, E., Bashari, M., & Zhang, X. (2013). An Overview of Ultrasound Assisted Food-Grade Nanoemulsions. Food Engineering Reviews, 5(3), 139-157. https://doi.org/10.1007/s12393-013-9066-3

Jafari, S., He, Y., & Bhandari, B. (2006). Nano-Emulsion Production by Sonication and Microfluidization-A Comparison. International Journal of Food Properties, 9(3), 475-485. https://doi.org/10.1080/10942910600596464

McClements, D. J., & Rao, J. (2011). Food-Grade Nanoemulsions: Formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity. Critical Reviews in Food Science and Nutrition, 51:4, 285-330. https://doi.org/10.1080/10408398.2011.559558

Zambrano-Zaragoza, M. L., Gutiérrez-Cortez, E., Del Real, A., González-Reza, R. M., Galindo-Pérez, M. J., & Quintanar-Guerrero, D. (2014). Fresh-cut Red Delicious apples coating using tocopherol/mucilage nanoemulsion: Effect of coating on polyphenol oxidase and pectin methylesterase activities. Food Research International. 62, 974-983. https://doi.org/10.1016/j.foodres.2014.05.011

Severino, R., Dang Vu, K., Dons, F., Salmieri, S., Ferrari, G., & Lacroix, M. (2014). Antimicrobial effects of different combined non-thermal treatments against Listeria monocytogenes in broccoli florets. Journal of Food Engineering, 124, 1-10. https://doi.org/10.1016/j.jfoodeng.2013.09.026

Prakash, A., Baskaran, R., & Vadivel, V. (2020). Citral nanoemulsion incorporated edible coating to extend the shelf life of fresh cut pineapples. LWT, 118, 108851. https://doi.org/10.1016/j.lwt.2019.108851

Zhang, Z., Vriesekoop, F., Yuan, Q., & Liang, H. (2014). Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion. Food Chemistry, volumen 150, 307-312. https://doi.org/10.1016/j.foodchem.2013.10.160

Saxena, A., Sharma, L., & Maity, T. (2020). Enrichment of edible coatings and films with plant extracts or essential oils for the preservation of fruits and vegetables. En Biopolymer-Based Formulations (págs. 859-880). https://doi.org/10.1016/B978-0-12-816897-4.00034-5

Gallegos-Vázquez, C., Scheinvar, L., Nuñez-Colín, C. A., & Mondragón-Jacobo, C. (2012). Morphological diversity of xoconostles (Opuntia spp.) or acidic cactus pears: a Mexican contribution to functional foods. Fruits, 109-120. https://doi.org/10.1051/fruits/2012001

Guzmán-Maldonado, S. H., Morales-Montelongo, A. L., Mondraagón-Jacobo, C., Herrera-Hernández, M. G., Guevara-Lara, F., & Reynoso-Camacho, R. (2010). Physicochemical, nutritional and functional characterization of fruits xoconostle (Opuntia matudae) pears from central-Mexico region. Journal Food Science, 75, 485-491. https://doi.org/10.1111/j.1750-3841.2010.01679.x

Morales, P., Barros, L., Ramírez-Moreno, E., Santos-Buelga, C., & Ferreira, I. (2015). Xoconostle fruit (Opuntia matudae Scheinvar cv. Rosa) by-products as potential functional ingredients. Food Chemistry, 185, 289-297. https://doi.org/10.1016/j.foodchem.2015.04.012

Cenobio-Galindo, A. d., Ocampo-López, J., Reyes-Munguía, A., Carrillo-Inungaray, M. L., Cawood, M., Medina-Pérez, G., . . . Campos-Montiel, R. G. (2019). Influence of Bioactive Compounds Incorporated in a Nanoemulsion as Coating on Avocado Fruits (Persea americana) during Postharvest Storage: Antioxidant Activity, Physicochemical Changes and Structural Evaluation. Antioxidants, 1-12. https://doi.org/10.3390/antiox8100500

Robledo, N., Vera, P., López, L., Mehrdad, Y. P., Tapia, C., & Abugoch, L. (2018). Thymol nanoemulsions incorporated in quinoa protein/chitosan edible films; antifungal effect in cherry tomatoes. Food Chemistry, 246, 211-219. https://doi.org/10.1016/j.foodchem.2017.11.032

Kim, I.-H., Oh, Y., Lee, H., Song, K., & Min, S. (2014). Grape berry coatings of lemongrass oil-incorporating nanoemulsion. LWT-Food Science and Technology, 1-10. https://doi.org/10.1016/j.lwt.2014.03.018

Chu, Y., Gao, C., Liu, X., Zhang, N., Xu, T., Feng, X., . . . Tang, X. (2020). Improvement of storage quality of strawberries by pullulan coatings incorporated with cinnamon essential oil nanoemulsion. LWT, 122, 109054. https://doi.org/10.1016/j.lwt.2020.109054

Publicado
2021-07-05
Cómo citar
Badillo Solis, K. I., Pérez Soto, E., Ocampo López, J., Aguirre Álvarez, G., Cenobio Galindo, A. de J., & Campos Montiel, R. G. (2021). Uso de recubrimientos a base de nanoemulsión como alternativa para conservar la calidad poscosecha del jitomate. Boletín De Ciencias Agropecuarias Del ICAP, 7(14), 14-18. https://doi.org/10.29057/icap.v7i14.7582

Artículos más leídos del mismo autor/a