Uso de recubrimientos a base de nanoemulsión como alternativa para conservar la calidad poscosecha del jitomate
Resumen
Hoy en día la industria alimentaria busca nuevas tecnologías que permitan aumentar la vida útil de productos frescos. Los recubrimientos alimenticios son una tecnología económica y amigable con el medio ambiente, dichas capas de recubrimiento pueden desarrollarse de lípidos, polisacáridos y proteínas funcionando como barreras contra el vapor de agua, los gases, y otros solutos. El uso de nanoemulsiones como recubrimiento proporciona un excelente sistema de liberación de ingredientes funcionales, como los agentes antimicrobianos y antioxidantes, mejorando así la calidad y extendiendo la vida útil de frutas y hortalizas frescas o mínimamente procesadas.
Descargas
Citas
Antunes, M. D., Rodrigues, D., Pantazis, V., Cavaco, A. M., Siomos, A. S., & Graca, M. (2013). Nutritional Quality Changes of Fresh-cut Tomato during Shelf Life. Food Science and Biotechnology, 22(5), 1229-1236. https://doi.org/10.1007/s10068-013-0206-6
SIAP.Servicio de Información Agroalimentaria y Pesquera. (2018).
Hussen, S. (2014). Ethylene as a Postharvest “Evil” and its Remedies in some Horticultural Crops . Greener Journal of Plant Breeding and Crop Science , 34-40. https://www.researchgate.net/publication/292963213
Navarro, M. (2007). Efecto de la composición de recubrimientos comestibles a base de hidroxipropilmetilcelulosa y cera de abeja en la calidad de ciruelas, naranjas y mandarinas. Tesis doctoral. España: Universidad Politécnica de Valéncia. Departamento de Tecnología de Alimentos.
Ranjan, S., Dasgupta, N., Chakraborty, A. R., & Melvin, S. (2014). Nanoscience and Nanotechnologies in Food Industries: Opportunities and Research Trends. Journal of Nanoparticle Research, 16(6), 147-152. https://www.researchgate.net/publication/262309141
Baldwin, E., Níspero-Carriedo, M., & Baker, R. (1995). Use of edible coatings to preserve quality of lightly (and slightly) processed products. Food Sci. Nutr. , 509-524. https://doi.org/10.1080/10408399509527713
Valdés, A., Mellinas, A., Ramos, M., Burgos, N., Jiménez, A., & Garrigós, M. (2015). Use of herbs, spices and their bioactive compounds in active food packaging. RSC Advances, 5(50), 40324-40335. https://doi.org/10.1039/C4RA17286H
Hernández-Fuentes, A., Trapala-Islas, A., Gallegos-Vásquez, C., Campos-Montiel, R., Pinedo-Espinoza, J., & Guzmán-Maldonado, S. (2015). Physicochemical variability and nutritional and functional characteristics of xoconostles (Opuntia spp.) accessions from Mexico. Fruits, 70(2), 109-116. https://doi.org/10.1051/fruits/2015002
Espinosa-Muñoz, V., Roldán-Cruz, C., Hernández-Fuentes, A., Quintero-Lira, A., Almaraz-Buendía, I., & Campos-Montiel, R. (2016). Ultrasonic‐Assisted Extraction of Phenols, Flavonoids, and Biocompounds with Inhibitory Effect Against Salmonella Typhimurium and Staphylococcus Aureus from Cactus Pear. Journal of Food Process Engineering, 40(2), e12358. https://doi.org/10.1111/jfpe.12358
Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2011). Use of essential oils in bioactive adible coatings. Food Engineering Reviews, 1-16. https://doi.org/10.1007/s12393-010-9031-3
Tenorio-Domínguez, M. (2016). Flavonoids extracted from orange peelings tangelo (Citrus reticulata x Citrus paradisi) and their application as a natural antioxidant in sacha inchi (Plukenetia volubilis) vegetable oil. Scientia Agropecuaria, 7(4), 419-431. https://doi.org/10.17268/sci.agropecu.2016.04.07
Vinha, A. F., Alves, R. C., Barreira, S. V., Castro, A., Costa, A. S., & Oliveira, M. P. (2014). Effect of peel and seed removal on the nutritional value and antioxidant activity of tomato (Lycopersicon esculentum L.) fruits. LWT - Food Science and Technology, 55, 197-202. http://dx.doi.org/10.1016/j.lwt.2013.07.016
USDA. Departamento de Agricultura de los Estados Unidos. (2017). https://www.usda.gov/
Lobato Ortiz, R., Rodríguez Guzmán, E., Carillo Rodríguez, J., Chávez Servia, J., Sánchez Peña, P., & Aguilar Meléndez, A. (2012). Exploración, colecta y conservación de recursos genéticos de jitomate: avances en la Red de Jitomate. Sistema Nacional de Recursos Fitogenéticos para la Alimentación y la Agricultura (SINAREFI), 54.
TRADE MAP. Trade statistics for international business development. (2018). https://www.trademap.org/Index.aspx
SAGARPA. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. (2018). https://www.gob.mx/cms/uploads/attachment/file/257077/Potencial-Jitomate.pdf
Salas-Méndez, E. d., Pinheiro, A. C., Ballesteros, L. F., Silva, P., Rodríguez-García, R., Hernández-Castillo, F. D., . . . de Rodríguez, D. J. (2019). Application of edible nanolaminate coatings with antimicrobial extract of Flourensia cernua to extend the shelf-life of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 150, 19-27. https://doi.org/10.1016/j.postharvbio.2018.12.008
Mutari, A., & Debbie, R. (2011). The effects of postharvest handling and storage temperature on the quality and shelf of tomato. African Journal of Food Science , 340-348. https://doi.org/10.5897/AJFS.9000283
FAO. (2017). Reducir pérdidas de alimentos y lograr sistemas alimentarios sostenibles. Recomendaciones de políticas públicas para México. http://www.fao.org/3/i7053s/i7053s.pdf
Ruíz, J., Vicente, A., Montañéz-Saenz, J. C., Rodríguez-Herrera, R., & Aguilar-González, C. N. (2012). Un tesoro perecedero en México: el tomate, tecnologías para prolongar su vida de anaquel. Investigación y Ciencia: Universidad Autónoma de Aguascalientes, 57-63. http://www.redalyc.org/articulo.oa?id=67424408008
Sharma, P., Shehin, V. P., Kaur, N., & Vyas, P. (2019). Application of edible coatings on fresh and minimally processed vegetables: a review. International Journal of Vegetable Science., 295-314. https://doi.org/10.1080/19315260.2018.1510863
Eissa, H. A. (2007). Effect of chitosan coating on shelf life and quality of fresh-cut mushroom. Journal of Food Quality, 623-645. https://www.researchgate.net/publication/229777424
Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6), 292-303. https://www.researchgate.net/publication/275969518
Dhall, R. (2013). Advances in edible coatings for fresh fruits and vegetables: a review. Critical Reviews in Food Science and Nutrition, 53(5), 435-450. https://doi.org/10.1080/10408398.2010.541568
Hall, D. J. (2011). Edible coatings from lipids, waxes, and resins. En D. J. Hall, Edible Coatings and Films to Improve Food Quality (págs. 79-101). CRC Press.
McClements, D. (2005). Food Emulsions: Principles, Practices, and Techniques. Boca Raton, FL: CRC Press.
Shakeel, F., Talegaonkar, S., Ahmad, F., Khar, R., Ali, M., & Shafiq, S. (2007). Development and bioavailability assessment of ramipril nanoemulsion formulation. European Journal of Pharmaceutics and Biopharmaceutics, 227-243. https://doi.org/10.1016/j.ejpb.2006.10.014
McClements, D. J. (2012). Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, 8(6), 1719-1729. https://doi.org/10.1039/C2SM06903B
Choi, A., Kim, C., Cho, Y., Hwang, J., & Kim, C. (2011). Characterization of capsaicin-loaded nanoemulsions stabilized with alginate and chitosan by self-assembly. Food and Bioprocess Technology, 4(6), 1119-1126. https://doi.org/10.1007/s11947-011-0568-9
McClements, D. (1999). Food emulsions. Principles, practice and techniques. Florida, EE.UU.: Press LLC.
Abbas, S., Hayat, K., Karanqwa, E., Bashari, M., & Zhang, X. (2013). An Overview of Ultrasound Assisted Food-Grade Nanoemulsions. Food Engineering Reviews, 5(3), 139-157. https://doi.org/10.1007/s12393-013-9066-3
Jafari, S., He, Y., & Bhandari, B. (2006). Nano-Emulsion Production by Sonication and Microfluidization-A Comparison. International Journal of Food Properties, 9(3), 475-485. https://doi.org/10.1080/10942910600596464
McClements, D. J., & Rao, J. (2011). Food-Grade Nanoemulsions: Formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity. Critical Reviews in Food Science and Nutrition, 51:4, 285-330. https://doi.org/10.1080/10408398.2011.559558
Zambrano-Zaragoza, M. L., Gutiérrez-Cortez, E., Del Real, A., González-Reza, R. M., Galindo-Pérez, M. J., & Quintanar-Guerrero, D. (2014). Fresh-cut Red Delicious apples coating using tocopherol/mucilage nanoemulsion: Effect of coating on polyphenol oxidase and pectin methylesterase activities. Food Research International. 62, 974-983. https://doi.org/10.1016/j.foodres.2014.05.011
Severino, R., Dang Vu, K., Dons, F., Salmieri, S., Ferrari, G., & Lacroix, M. (2014). Antimicrobial effects of different combined non-thermal treatments against Listeria monocytogenes in broccoli florets. Journal of Food Engineering, 124, 1-10. https://doi.org/10.1016/j.jfoodeng.2013.09.026
Prakash, A., Baskaran, R., & Vadivel, V. (2020). Citral nanoemulsion incorporated edible coating to extend the shelf life of fresh cut pineapples. LWT, 118, 108851. https://doi.org/10.1016/j.lwt.2019.108851
Zhang, Z., Vriesekoop, F., Yuan, Q., & Liang, H. (2014). Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion. Food Chemistry, volumen 150, 307-312. https://doi.org/10.1016/j.foodchem.2013.10.160
Saxena, A., Sharma, L., & Maity, T. (2020). Enrichment of edible coatings and films with plant extracts or essential oils for the preservation of fruits and vegetables. En Biopolymer-Based Formulations (págs. 859-880). https://doi.org/10.1016/B978-0-12-816897-4.00034-5
Gallegos-Vázquez, C., Scheinvar, L., Nuñez-Colín, C. A., & Mondragón-Jacobo, C. (2012). Morphological diversity of xoconostles (Opuntia spp.) or acidic cactus pears: a Mexican contribution to functional foods. Fruits, 109-120. https://doi.org/10.1051/fruits/2012001
Guzmán-Maldonado, S. H., Morales-Montelongo, A. L., Mondraagón-Jacobo, C., Herrera-Hernández, M. G., Guevara-Lara, F., & Reynoso-Camacho, R. (2010). Physicochemical, nutritional and functional characterization of fruits xoconostle (Opuntia matudae) pears from central-Mexico region. Journal Food Science, 75, 485-491. https://doi.org/10.1111/j.1750-3841.2010.01679.x
Morales, P., Barros, L., Ramírez-Moreno, E., Santos-Buelga, C., & Ferreira, I. (2015). Xoconostle fruit (Opuntia matudae Scheinvar cv. Rosa) by-products as potential functional ingredients. Food Chemistry, 185, 289-297. https://doi.org/10.1016/j.foodchem.2015.04.012
Cenobio-Galindo, A. d., Ocampo-López, J., Reyes-Munguía, A., Carrillo-Inungaray, M. L., Cawood, M., Medina-Pérez, G., . . . Campos-Montiel, R. G. (2019). Influence of Bioactive Compounds Incorporated in a Nanoemulsion as Coating on Avocado Fruits (Persea americana) during Postharvest Storage: Antioxidant Activity, Physicochemical Changes and Structural Evaluation. Antioxidants, 1-12. https://doi.org/10.3390/antiox8100500
Robledo, N., Vera, P., López, L., Mehrdad, Y. P., Tapia, C., & Abugoch, L. (2018). Thymol nanoemulsions incorporated in quinoa protein/chitosan edible films; antifungal effect in cherry tomatoes. Food Chemistry, 246, 211-219. https://doi.org/10.1016/j.foodchem.2017.11.032
Kim, I.-H., Oh, Y., Lee, H., Song, K., & Min, S. (2014). Grape berry coatings of lemongrass oil-incorporating nanoemulsion. LWT-Food Science and Technology, 1-10. https://doi.org/10.1016/j.lwt.2014.03.018
Chu, Y., Gao, C., Liu, X., Zhang, N., Xu, T., Feng, X., . . . Tang, X. (2020). Improvement of storage quality of strawberries by pullulan coatings incorporated with cinnamon essential oil nanoemulsion. LWT, 122, 109054. https://doi.org/10.1016/j.lwt.2020.109054